FLIGHT TEST ENGINEERING HANDEOOK

RUSSEL M. HERRINGTON
Major, USAF
paul e. shoemacher
Capizin, USAF
EugEme p. BaAtlett
lat Lleutenant, USAF

EVERETT W. OUNLAP

EPRODUCE0 or
NATIOMIAL TECHNICAL
INFORMATION SERVICE US DEPARIMEMI OF comyerce spamgitio, va 22161

DOCUMENT CONTROKOATA-RED

FOREWORD

The publication of a series of handbooks on the performance testing and evaluation of all types of Air Force aircraft is planned by the Flight Research Division, Air Force Flight Test Center. This handbook has been issued as an interim measure to provide assistance to flight test personnel pending publication of the new series of handbooks. Chapters I and III of the original Technical Report Number 6273 have been replaced by AFFTC Technical Notes 59-22 and 59-47. These technical notes are on airspeed, altitude and temperature measurement, and turbojet engine performance. They represent updated and improved versions of the original contents of TR Number 6273.

As a matter of expediency, the numbering of charts, figures, and equations in the technical notes has been retained. This has led to inconsistency in the numbering system, but, since appropriate references in the text have been changed, it is felt that no confusion will result.

The United States Standard Atmosphere used as the basis for charts and tables in Chapter 1 is equivalent to the International Civil Aviation Organization (ICAO) Standard Atmospher:- adopted by NACA on November 20, 1952 and contained in NACA Report 1235 "Standard Atmosphere - Tables and Data for Altitudes to 65, 800 Feet'", 1955 (Reference 6). The equations of this report were used to extend the tables to 80,000 feet. The properties tabulated in Chapter 1 are identical with those in the ARDC Model Atmosphere, 1956, the U. S. Extension to the ICAO Standard Atmosphere, 1958 (Reference 7) and the ARDC Model Atmosphere, 1959 (Reference 8). One exception should be noted: the sea-level speed of sound is taken as $1116.45 \mathrm{ft} \mathrm{sec}^{-1}$ in Shapter 1 , whereas it was $1116.89 \mathrm{ft} \mathrm{sec}^{-1}$ in NACA Report 1235 , since the ratio of specific heats, γ, was taken as 1.4 exactly for Chapter 1 and implied as 1.4011 in NACA Report 1235 , on the basis of experimental values of sound speed.

The constants and conversion factors used in Chapters 2 through 7 and Appendixes I and Il are based on the earlier "Standard Atrnosphere Tables and Data", NACA Report 218, 1948. The gas constant, R used in Chapter I , e.g. in the perfect gas law $\mathrm{P}_{\mathrm{a}}=\rho \mathrm{R}_{\mathrm{a}}$, has the dimensions $\mathrm{ft}^{2} / \sec ^{2 \circ} \mathrm{~K}$. It is equal to ine product of the gas constant used in the remaining charters and ..e acceleration due to gravity. The dimensions of the latter a are $\mathrm{ft} /{ }^{\circ} \mathrm{K}$.

While this handbook continue, to provide, in general, adequate instruction for conducting performance tests on turbojet and reciprocating engine powered conventional aircraft, Chapter VII, "Helicopier Flight Test Performance and Analysis'", is in need of updating. Also, analysis is lacking in regard to high performance aircraft. Caution should be exercized in applying correction procedures to flight data
obtained with this type of aircraft. For example, significant errors may be incurred in making corrections to climb data for wind gradients and for weight because of the simplifying assumptions which have been made.

The addition of a list of references has been made (reference TABLE OF CONTENTS). Contained in the se references is considerable supplementary information including data on standard atmospheres 6, 7, 8, a review of aerodynamics prepared by the USAF Experimental Test Pilot School ${ }^{2}$, and a comprehensive NATO flight test manual prepared under the auspices of the Advisory Group for Aeronautical Research and Development ${ }^{3}$.

ABSIRACT

Mothoda of obtaining flight tent data for reoiprooating ongine airoraft (including heliooptere) and turbojet airoraft are presented togother vith various methode of data analfeis and data presentation. Ccrreotion of alroraft porformanoe to etandard conditions 1s included, me are detalled derivation of correotion faotore and performanoe prametere. Nimerous eraphs and oharts coataining information required by and ueeful to the ilight te日t engineer are preaented, together with mample data redcotion forms and sample flight teat prograns.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

POBLICATION REVIEN

Manusoript copy of this report hag been reviewod and found astiafactory for publioation.

FOR WR: COMADDIIG Crin:par:

TABLE OF CONTENTS

LIST OF REFERENCE AND COMPUTATIONAL CHARTS ix
INTRODUCTION xiii
CHAPTER ONE Speed, Altitude, and Temperature Instruments - and Calibration
Symbols Used in Chapter One $x y$
Section 1 The Standard Atmosphere 1
Section 2 Theory of Altitude, Air-Speed, Mach Number and Air Temperature Measurement 7
Section 3 Instrument Error - Theory and Calibration 24
Section 4 Pressure Lag Error - Theory and Calibration 28
Section 5 Position Error - Theory and Calibration 48
Section 6 Calibration of the Free Air Temperature Instrumentation 93
Section 7 Data Reduction Outlines 100
Section 8 Charts 118
Section 9 U.S. Standard Atmosphere Tables 265
CHAPTER TWO Reciprocating Engine Performance 2-1
Section 2.1 Horsepower Determination for Test Conditions 2-1
Section 2.2 Power Correction for Temperature Variation at Constant Manifold Pressure 2-5
Section 2.3 Power Correction for Manifold Pressure Variation Resulting from Temperature Variation and Flight Mach Number Variation 2-6
Section 2.4 Power Correction for Turbosupercharger RPM and Back Pressure Variation at Constant Manifold Pressure 2-13
Section 2.5 Critical Altitude 2-17
Section 2.6 Engine Data Plotting, Prop Load, BMEP Data, Supercharger Operation 2-18
Section 2.7 Fuel Consumption 2-23
Section 2.8 Engine こooling 2-25Preceding page blank
CHAPTER THREE Turbojet Engine Performance
Symbols Used in Chapter Three 3-i
Section 1 Introduction to Thrust Measurement 3-1
Section 2 Turbojet Engine Performance Parameters 3-8
Section 3 Air Induction System Performance 3-15
Section 4 Stanc'ardization of Test Data with Engine Parameters 3-29
Section 5 Air Flow Measurement 3-33
Section 6 In-Flight Thrust Measurement 3-40
Section 7 Water Injection 3-62
Section 8 Data Reduction Cutlines 3-6t
Section 9 Charts 3-68
CHAPTER FOUR Level Flight Performance 4-1
Section 4.1 Densicy Altitude and Pressure Altitude Flight Test Methods 4-1
Section 4.2 Aerodynamic Forces and Their Relation to Eigine Power and Propulsive Thrust 4-2
Section 4.3 Speef-Power Curves - Reciprocating Engine Aircraft 4-6
Section 4.4 Weight Corrections for Speed Power Data - Reciprocating Engine Aircraft 4-9
Section 4.5 Configuration Change Corrections for Speed Power Data 4-11
Section 4.6 The Generalized Dower Parameter (PIW) and Speed Parameter (VIW) - Reciprocating Engine Aircraft 4-13
Section 4.7 Fuel Consumption - Range and Endurance - Reciprocating Engine Aircraft 4-16
Section 4.8 Speed Power Curves - Turbojet Aircraft 4-21
Section 4.9 Weight Change Corrections for Speed Power data - Turbojet Aircraft 4-28
Section 4.10 Fuel Consumption - Endurance and Range - Turbojet Aircraft 4-33
Section 4.11 Flight Thrust Measurement Applications to Drag and Lift Coefficient and Aircraft Efficiency Determination 4-42
CHAPTER FIVE Climb and Descent Performance 5-1
Section 5.1 Rate of Climb Parameters - Derivation 5-1
Section 5.2 Temperature Variation Correction to Rate of Climb Data 5-6
Section 5.3 Weight Variation Correction to Rate of Climb Data 5-9
Section 5.4 Vertical Wind Gradient Correction to Rate of Climb Data 5-11
Section 5.5 Climb Path Acceleration Correction to Rate of Climb Data 5-13
Section 5.6 Temperature Effects on Fuel Comsumption and Weight During Climb 5-16
Section 5.7 Determination of Best Rate of Climb and Best Climbing Speed 5-18
Section 5.8 Dimensionless Rate of Climb Plotting 5-22
Section 5.9 General Climb Test Infc.mation 5-27
Section 5.10 Rate of Descent Data 5-35
CHAPTER SIX Take-off and Landiug Performance 6-1
Section 6.1 Techniques and Configurations for Take- off Tests - JATO Operation 6-1
Section 6.2 Distance and Height Measurements and Equipment 6-2
Section 6.3 Take-off Data Corrections for Wind, Weight, and Density 6-6
Section 6.4 Landing Performance Tests and Corrections 6-15
Section 6.5 Dimensionless Parameters for Take-off and Landing Performance Data 6-18
CHAPTER SEVEN Helicopter Flight Test Performance and Analysis 7-1
Section 7.1 Introduction 7-1
Section 7.2 Level Flight Performance 7-3
Section 7.3 Rotor Thrust, Power, and Efticiency inHovering Flight7-11
Section 7.4 Climbs and Descents (Autorotation) 7-19
Section 7.5 Fuel Consumption, Endurance and Range 7-26
Section 7.6 Airspecd, Altimeter, and Temperature System Calibrations 7-31
REFERENCES 8-1
AFPENDIX I
Density Altitude Charts 8-5
Differential -Static Pressure Ratio versus Mach Number 8-17(Supersonic-Normal Shock Condition)
Reynolds Number-Mach Number Ratio versus PressureAltitude and Temperature8-18
Supersonic Mach Number Functions 8-20
Psychrometric Chart 8-33
APPENDIX II
Nomenclature $8 . .35$
Physical Information and Systems of Units 8-46
Conversion Tables 8-47
CHAPTER ONE Page
CHART 8.1 $H\left(G / g L_{L}\right)$ versus $h-H(G / g S L)$ 118
CHART 8.2 M versus T_{a} for constant ${ }_{i c}$ and constant Temperature Probe Recovery Factor, K 120
CHART 8.21 Compressibility Correction to Calibroted Airspeed 126
CHART $8.3 \quad H_{c}$ versus $\mathrm{V}_{\mathrm{e}} / M$ 128
CHART $8.4 \quad \nabla_{1 t}$ versus $t_{C^{2}}$ for constant M_{1} 130
CHART 8.5 M versus V_{c} for constont H_{c} and M versus V_{f} for constant V also $M_{i c}$ versus $S_{i c}$ for constant $\hat{H}_{i c}$ 139
CHART 8.61 ${ }^{\lambda} H_{i c} /{ }^{\lambda} S L$ versus $H_{i c}$ for constant $V_{i c}$ 203
CHART $8.62 \quad \lambda / \lambda H_{i c}$ versus $H_{i c}$ for constont tat 204
CHART $8.63 \quad F_{1}\left(H_{i c}, V_{i c}\right)$ versus $V_{i c}$ for constont $H_{i c}$ 205
CHART $8.7 \quad H_{i c}$ versus $\Delta P_{p} / \Delta H_{p c}$ for constant $\Delta H_{p c}$ 207
CHART $8.8 \quad H_{i c}$ versus $\Delta P_{p} / \Delta H_{p c}$ for constant ΔP_{p} 211
CHART $8.9 \quad V_{i c}$ versus $\Delta P_{p} / \Delta V_{p e}$ for constant $\Delta V_{p c}$ 214
CHART 8.10 $V_{i c}$ versus $\Delta P_{p} / \Delta V_{p c}$ for constant ΔP_{p} 216
CHART 8.11 $\Delta V_{p c}$ versus $V_{i c}$ for constant $\Delta P_{p} / q_{c i c}$ 218
CHART 8.12 $\Delta H_{p c} / \Delta V_{p c}$ versus $V_{i c}$ for constant $H_{i c}$ 222
CHART 8.13 $\Delta V_{p g}$ versus ΔP_{p} for constant $V_{i c}$ and $\Delta H_{p c}$ versus ΔP for constant also $\Delta V_{p c}^{c}$ versus $\Delta H_{p c}$ for constant $V_{i c}$ and $H_{i c}$ 228
CHART $8.14 \quad M_{i c}$ versus $\Delta M_{p c} \Delta H_{p c}$ for constant $H_{i c}$ 235
CHART 8.15 $\triangle M_{p}$ versus $\Delta P_{p} / P_{S}$ for constant $M_{i c}$ and ${ }^{\rho} \Delta H_{p c}$ versus $\Delta P_{p} / P_{s}$ for constant $H_{i c}$ also $\Delta M_{p c}$ versus $\Delta H_{p c}$ for constant $M_{i c}$ and $H_{i c} \quad 240$
CHART 8.16 $\Delta M_{p c} / \Delta V_{p c}$ versus $M_{i c}$ for constant $H_{i c}$ 251
CHART 8.17 $M_{i c}$ versus $\Delta M_{p c} /\left(\Delta P_{p} / q_{c i c}\right)$ 256
CHART 8.18 $\Delta \boldsymbol{P}_{p} / q_{c i c}$ versus $\Delta M_{p c}$ for constont $M_{i c}$ 260
TABLE 9.2 and 9.3 United States Standard Atmusphere 265
TABLE 9.4 Mach Number for vorious volues of q_{c} / P_{a} 309
TABLE 9.5 Mach Number for various values of q_{C} / P_{a} for $M \geq 1.0$ 313
TABLE 9.6 Differential Pressure, q_{c} for various values of V_{c} 321
TABLE 9.7 Centigrade - Fahrenheir Conversion Toble 337
CHAPTER TWO
CHART 2.31 Manifold Pressure Correction. (For change in Supercharger Inlet Air Temperature) P_{2} / P_{1}, CAT 2-31
CHART 2.32 Manifold Pressure Correction (For change in Corburetor Inlet Air Temperature) $\mathrm{P}_{2} / \mathrm{P}_{1}$, CAT 2.32
CHART 2.33 Ram Pressure Ratio - Ram Efficiency - Mach Number M, $\mathrm{P}_{\mathbf{1}} / \mathrm{P}_{\mathrm{a}}{ }^{\eta_{\mathrm{R}}}$ 2-33
CHAPTER THREE
CHART 9.1Relation between Total Pressure Recovery ond Ram Efficiency3.68
CHART 9.2 Total Pressure Recovery for Inlets with Sharp Lips 3-69
CHART 9.3 Turbulent Boundary Layer Thickness for Flat-Plates at Zero Angle of Attack as a Function of Flight Speed and Alritude $3-70$
CHART 9.4 Pressure Recovery of Boundary Layer Air Admitted into Side-Inlet Installation - Turbulent Flow 3.71
CHART 9.5 Total Momentum Ratio for Various Scoop Height to Boundary Layer Ratios 3-73
CHART 9.6 Total Pressure Recovery for Straight Subsonic Diffusers 3.74
CHART 9.7 Total Pressure Loss ir. Compound Subsonic Diffuser Bends 3.76
CHART 9.8 M_{0} versus $P_{i} / P_{\mathbf{t}_{0}}$. Normal Shock Conditions 3-77
CHART 9.9 Total Pressure Ratios for 2-Dimensional 2-Shock Compression 3.78
CHART 9.10 Total Pressure Ratios for 2-Dimensional 3-Shock Compression 3.79
CHART 9.11 Total Pressure Rotics for Conical 2-Shock Compression $3-80$
CHART 9.12 Mach Number Change Through on Oblique Shock for a Two-Dimensional Wedge $3-81$
CHART 9.13 Total Pressure Ratio Across on Oblique Shork for a Two-Dimensional Wedge 3-82
CHART 9.14 Theoretical Additive-Drag Coefficients for Open-Nosed Inlets 3.83
CHART 9.15 Theoretical Addifive-Drag Coefficients ior Annular Nose Inlets with Conical Flow at the Inlet 3.84
CHART 9.16 Change in Cowl Drag Coefficient with a Change in Mass Flow Ratio as a Function of Niuch Number $3-85$
CHART 9.17 Idealized Gos Flow with Suberitical Operation 3.86
CHART 9.18 Idealized Gas Flow with Supercritical Operation. Converging Nozzle 3.87
CHART 9.19 Goss Thrust Parameter versus Nozzle Pressure Ratio with Subcritical Operation 3.90
CHART 9.20 Gross Thrust Parameter versus Nozzle Pressure Ratio with Supercritical Operation - Converging Nozzle. 3.91

CHART 9.21 Gross Thrust Parameter versus Nozzie Pressure Ratio with Supercritical Operation Converging - Diverging Nozzle

CHART $9.22 \quad P_{t}^{\prime \prime} / P_{\text {g }}$ versus Mach Number (Rayleigh Supersonic Pitot Formula)
 3-97

CHAPTER FOUR

CHART 4.41 Power Correction for Weight Change 4-49 $W_{t}, \Delta W, b, M, H_{c}$
CHART 4.71 Natural Log of Initial to Final Gross Weight Ratio for Range and Endurance Computations 4-55 $W_{1} / W_{2}, \log _{e} W_{1} / W_{2}$
CHART 4.72 Gross Weight Factor for Range and Endurance Computations 4-56 W, $2 / \sqrt{W}$
CHAPTER FIVE
CHART 5.21 Rate of Climb Power Correction for Temperature Variation 5-35

$$
\mathrm{MP}_{\mathrm{t}} / \mathrm{P}_{\mathrm{a}}, \sqrt{\mathrm{~T}_{a t} / \mathrm{T}_{a s}}, \mathrm{~W}_{\mathrm{t}}
$$

CHART 5.22 Turbojet Rate of Climb Power Correction Factor H_{c}, M, W_{t} 5-36
CHART 5.23 Turbojet Raite of Climb Power Correction Factor 5-38
$W / \delta_{a}, H_{c}$
CHART 5.31 Rate of Climb Induced Drag Correction Factor 5-40CHART 5.41 Rate of Climb Vertical wind GradientCorrection Factor$5-42$$H_{c}, V_{c}, d V_{w} / d h$
CHART 5.51 Rate of Climb Acceleration Correction Factor $\quad H_{c}, V_{c}$ 5-43
CHART 5.52 Rate of Climb Acceleration Correction Factor $\quad H_{c}, V_{c}, d V_{c} / d H_{c}$ 5-44

APPENDIXI

CHARTI-1 Density Altitude Charts 8-5
CHARTI-2 Differential-Static Pressure Ratio versus Mach Number (Supersonic-Normal Shock Condition) 8-17
CHARTI-3 Reynolds Number-Mach Number Ratio versus Pressure Altitude 8-18
CHARTI-4 Supersonic (Isentropic) Mach Number Functions M versus P_{t} / P_{s} 8-20
M versus q / P_{s} 8-21
M versus q / P_{t} 8-22
M versus ρ_{t} / ρ_{s} 8-23
M versus T_{t} / T_{s} 8-24
CHARTI-5 Supersonic (Normal Shock Conditions) Mach Number Functions M versus $P_{t}^{\prime} / P_{s} \quad 8-25$
M versus P_{s} / P_{s} 8-26
M versus P_{t}^{\prime} / P_{t} B-27
M versus ρ_{s} / ρ_{s} 8-28
M versus $\mathrm{T}_{\mathrm{s}} / \mathrm{T}_{\mathrm{s}}$ 8-29
M versus M^{\prime} 8-30
M versus $\mathrm{V}^{\prime} / \mathrm{V}$ 8-31
M versus a'/a 8-32
CHARTI-6 Psychrometric Chart 8-33
APPENDIX II
CHARTII-1 Nomenclâture 8-35
CHARTII-2 Physical Information and Systems of Units 8-46
CHARTL-3 Conversion Tables 8-47

No single or rigid method of data anslysis and presentation has been set down in this report. Rather, an attempt has been made to show various methode of data standardiration and plotting. The 1 light testing agencs can best determine the procedures most suited to the particular test, type of aircraft. or trpe of report desjred.

Considerable detail concernine the derivation of correction factore and performance parameters has been included. The function of these derivations is not to prove the results, but to show the methods. When performance analysis problems result from new type of alrcraft, engines, or flight conditions, these mothode of deriving corrections and parameters min be usoful as a starting point.

Aircraft stability and control teste and methods are not included, but will be the subject of a eeparate report.

Although extreme care was taken in the preparation of this report, there is a possibility that errors are present. Please address correspondence to,

COMMANDER
AIR PORCE FLIGET TEST CESTER
IDMARDS AIR FORCE BASE
EDMARDS, CALIFORHIA
ATTH: Flight Research Division, FTTER

Term	Definition	Units
a	Speed of sound, $38.967 \sqrt{\mathrm{~T}_{\mathrm{a}}\left({ }^{\circ} \mathrm{K}\right)}$	knots
a_{8}	Standard day speed of sound, 38.967 $\sqrt{\mathrm{T}_{\mathrm{ag}}}\left({ }^{\circ} \mathrm{K}\right)$	knots
a_{t}	Test day speed of sound, $38.967 \sqrt{\mathrm{Tat}\left({ }^{\circ} \mathrm{K}\right)}$	knots
${ }^{\text {a }}$ SL	Speed of sound at standard sea level; 661. 48	knots
${ }^{\circ} \mathrm{C}$	Degrees centigrade	
C_{L}	Airplane lift coefficient, $n W /\left(\rho V_{t}^{2} S / 2\right)$	
$\mathrm{C}_{\text {Lic }}$	"Indicated" lift coefficient, $\left.n W / f P_{B} M_{i c}{ }^{2} \mathrm{~S} / 2\right)$	
d	Differential Example: $\mathrm{dH}_{\mathrm{ic}}=$ differential indicated pressure altitude corrected for instrument error	
$d / d t$	Time rate of change Example: $\mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}=$ time rate of change of indicated pressure altitude corrected for instrument error	
f_{n}	Function of () Example: $P_{s}=f_{2}\left(\mathrm{H}_{\mathrm{ic}}\right)$. This means that is a function of $\mathrm{Hic}_{\mathrm{ic}}$. In other words, $\mathrm{P}_{\mathrm{g}} \mathrm{m}$ be determined if H_{ic} is known.	$\begin{aligned} & P_{s} \\ & \text { nay } \end{aligned}$
g	Acceleration due to gravity at a point	feet/second ${ }^{2}$
SSL	Acceleration due to gravity at otandard sea level	$\begin{aligned} & 32.17405 \text { feet/ } \\ & \text { second } \end{aligned}$
G	Gravitational constant	```32.17405 feet (second}\mp@subsup{}{}{2 geopotential feet```
h	Tapeline altitude	feet
H	Geopotential at a point (this is a measure of the gravitational potential energy of a unit mass at this point relative to mean sea level)	geopotintial feet
H_{c}	Pressure altitude, $. \mathrm{H}_{\mathrm{i}}+\Delta \mathrm{H}_{\mathrm{ic}}+\Delta \mathrm{H}_{\mathrm{ic} \ell}+$ $\Delta H_{p c}$	feet
'Hg	Inches of mercury	
H_{i}	Indicated pressure altitude	feet
Hic	In ifcated pressure altitude corrected for instrument error, $\mathrm{H}_{\mathrm{i}}+\Delta \mathrm{H}_{\mathrm{ic}}$	feet

$\Delta \mathrm{H}_{\mathrm{ic}}$	Altimeter instrument correction	feet
$\mathrm{H}_{\mathrm{ic} \ell}$	Indicated pressure altitude corrected for instriment and lagerrors, $\mathrm{H}_{\mathrm{i}}+\Delta \mathrm{H}_{\mathrm{ic}}+$ $\Delta H_{i c h}$	feet
$\Delta H_{i c l}$	Altimeter lag correction	feet
ΔH_{p}	Altimeter position error corresponding to ΔP_{p}	feet
$\Delta H_{p c}$	Altimeter position error correction	feet
K_{n}	A constant Example: $\mathrm{K}_{5}=52.86784$	
K	Temperature probe recovery factor	
${ }^{\circ} \mathrm{K}$	Degrees Kelvin	
m	The slope of a line at a point	
M	Flight or free stream Mach number	
M_{i}	Indicated Mach number	
$\mathrm{M}_{\text {ic }}$	Indicated Mach number corrected for instrum error, $\mathrm{M}_{\mathrm{i}}+\Delta \mathrm{M}_{\mathrm{ic}}$	
$\Delta M_{i c}$	Machmeter instrument correction	
ΔM_{p}	Machmeter position error corresponding to	
$\Delta M_{p c}$	Machmeter position error correction	
n	Load factor	
$\mathrm{NPr}_{\mathrm{r}}$	Prandtl number, $\mu / \rho d$ where d is the therm diffusivity	
N_{R}	Reynolds number, $\rho L V / \mu$ where L is a characteristic length and V is axial velocity	
P	The applied pressure at time t	"Hg
$\mathrm{Pa}_{\text {a }}$	Atmospheric pressure corresponding to H_{C}	'Hg
$\mathrm{PaSL}^{\text {a }}$	Atmospheric pressure at standard sea level	$29.92126^{\prime \prime} \mathrm{Hg}$
P_{i}	The indicated pressure at time t	'Hg
ΔP_{p}	Static pressure error (or position error)	'Hg
$\mathrm{P}_{\text {s }}$	Pressure corresponding to H_{ic}	' Hg
P_{t}	Free stream total pressure	' Hg

$P_{t}{ }^{\prime}$	Total pressure at total pressure source (for subsonic speeds, P_{t} is equal to the free stream total pressure, P_{t}. For supersonic speeds, P_{t} is equal to the total pressure behind the shock which forms in front of the probe and is therefore not equal to P_{t}).	'Hg
9.	Dynamic pressure, $q=\rho V_{t}{ }^{2} / 2=0.7 P_{a} M^{2}$	"Hg
9_{c}	Differential pressure, $P_{t}{ }^{\prime}-P_{a}\left(q_{c}\right.$ is also called impact pressure or compressible dynamic pressure)	'Hg
qcic	Differentiai pressure corresponding to $V_{i c}$, $\mathbf{P}_{\mathbf{t}}{ }^{\prime}-\mathbf{P}_{\mathbf{s}}$	"Hg
r	Radius of the earth	feet
R	Gas constant for dry air	$\begin{aligned} & 3089.67 \text { feeft }^{2} / \\ & \cdot \mathrm{K} \mathrm{~second} \end{aligned}$
S	Total wing area	feet ${ }^{2}$
t	Time	seconds
t_{a}	Atmospheric temperature	${ }^{\circ} \mathrm{C}$
$t_{\text {as }}$	Standard day atmospheric temperature corresponding to H_{C}	${ }^{\circ} \mathrm{C}$
$\mathrm{taSL}_{\text {a }}$	Standard sea level atmospherı, iemperature	$15^{\circ} \mathrm{C}$
$t_{\text {at }}$	Test day atmospheric temperature	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathbf{i}}$	Indicated temperature	${ }^{\circ} \mathrm{C}$
${ }_{\text {tic }}$	Indicated temperature corrected for instrument error, $t_{i}+\Delta t_{i c}$	${ }^{\circ} \mathrm{C}$
$\Delta t_{\text {ic }}$	Air temperature instruricent correction	${ }^{\circ} \mathrm{C}$
T_{a}	Atmospheric temperaturs	${ }^{\circ} \mathrm{K}$
T ${ }_{\text {d }}{ }^{\text {B }}$	Standard day atmospheric temperature corresponding to H_{c}	${ }^{\circ} \mathrm{K}$
TaSL	Standard sea level atmospheric temperature	$288.16^{\circ} \mathrm{K}$
Tat	Test day atmospheric temperature	${ }^{\circ} \mathrm{K}$
T_{i}	Indicated Ternperature	${ }^{\circ} \mathrm{K}$
Tic	Indicated temperature corrected for instrument error, $T_{i}+\Delta T_{i c}$	${ }^{\circ} \mathrm{K}$

$\Delta \mathrm{T}_{\text {ic }}$	Air temperature instrument correction	-K
T_{t}	Total temperature	${ }^{\circ} \mathrm{K}$
V_{c}	Calibrated airspeed, $V_{i}+\Delta V_{i c}+\Delta V_{i c ~}$ + $\Delta V_{p c}$	knots
V_{e}	Equivalent airspeed, $V_{c}+\Delta V_{c}$ or $V_{t} \sqrt{\sigma}$	knots
V_{i}	Indicated airspeed	knots
$\mathrm{V}_{\text {ic }}$	Indicated airspeed corrected for instrument error, $V_{i}+\Delta V_{i c}$	knots
$\Delta V_{\text {ic }}$	Airspeed indicator instrument correction	knots
$\mathrm{V}_{\text {ic }} \boldsymbol{l}$	Indicated airspeed corrected for instrument and lag errors, $V_{i}+\Delta V_{i c}+\Delta V_{i c} l$	knots
$\Delta V_{i c l}$	Airspeed indicator lag correction	knots
ΔV_{p}	Airspeed indicator position error corresponding to ΔP_{p}	knots
$\Delta V_{\text {pc }}$	Airspeed indicator position error correction	knots
V_{t}	True airspeed	knots
$V_{t s}$	Standard day true airspeed	knots
V_{tt}	Test day true airspeed	knots
W	Aircraft gross weight	pounds
α	Angle of attack	
β	Angle of sidestip	
γ	Ratio of specific heats, 1.40 for air	
δ	$\mathrm{Pa}_{\mathrm{a}} / \mathrm{P}_{\text {aSl }}$	
$\delta_{i c}$	$\mathrm{P}_{\mathrm{s}} / \mathrm{PaSL}^{\text {a }}$	
θ	Ta/TaSI,	
θ_{s}	Tas/TaSL	
θ_{t}	$\mathrm{Tat}_{\text {/ }} / \mathrm{T}_{\text {aSL }}$	
λ	Lag constant	seconds
$\lambda_{\text {Hic }}$	Lag constant corresponding to $\mathrm{Hic}_{\text {ic }}$	seconds
λ_{s}	Static pressure lag constant	seconds
$\lambda_{\text {SL }}$	Lag constant at standard sea level	seconds
$\lambda_{\text {aSL }}$	Static pressure lag constant at standard sea level	seconds

λ_{t}	Total pressure lag constant	seconds
$\lambda_{\text {tSL }}$	Total pressure lag constant at standard sea level	seconds
μ	Viscosity at temperature T_{a}	pounds second/feet ${ }^{2}$
μ_{Hic}	Viscosity corresponding to H_{ic}	pounds second/feet ${ }^{2}$
$\mu_{\text {SL }}$	Viscosity at standard seạ level	$\begin{aligned} & 3.7452 \times 10^{-7} \\ & \text { pounds }- \text { second } / \\ & \text { feet }^{2} \end{aligned}$
p	Air density	slugs/feet ${ }^{3}$
P_{s}	Standaṛd day air density corresponding to H_{c}	slugs/feet ${ }^{3}$
PSL	Air density at standard sea level	$\begin{aligned} & 0.0023769 \\ & \text { slugs } / \text { feet }^{3} \end{aligned}$
Pt	Test day air density	slugs/feet ${ }^{3}$
σ	P/PSL	
σ_{8}	$P_{\text {g }} /$ PSL	
σ_{t}	Pt:'PSL	
τ	Acoustic lag	seconds

THE STANDARD ATMOSPHERE

The performance of an aircraft is influenced by the pressure and remperature of the air through which the aircraft is flying. Studies of the earth's atmosphere have shown that these quantities depend primarily on altitude, and vary relatively little from day to day. Consequently, a "standard" atmosphere can be usefully established by definition of a pressure and temperature for each altitude. This standard will approximate the atmospheric conditions for any day farrly closely. By applying small corrections to data acquired on a non-standard day, the data may be reduced to the standard day. This makes possible comparison of results obtained on other days with the same aircraft and with other aircraft.

1.1 THE UNITED STATES SIANDARD ATMOSPHERE

For many years a standard atmosphere based on NACA Report No. 218, "Standard Atmosphere - Tables and Data," has been used in the United States. Recently many organizations including the Air Research and Development Command of the United States Air Force have adopted a new standard, the United States Standard Atmosphere, which is consistent with that of the International Civil Aviation Organization. This new standard atmosphere is discusced in NACA Report No. 1235, "Standard Atmosphere - Tables and Data for Altirudes to 65, 800 Feet." All charts and tables in this manual are based on the US Stardard Atmosphere.

1.1.1 Basic Assumptions:

The United States Standard Atmosphere is derived from the following assumptions which closely approximate true atmospheric conditions:
(1) The air is dry
(2) The atmosphere is a perfect diatomic gas:

$$
\mathrm{P}_{\mathrm{a}}=\rho \mathrm{RT}_{\mathrm{a}}
$$

In specific units

$$
\begin{array}{rlr}
\rho & =0.022891 \frac{P_{a}}{T_{a}} & 1.2 \\
\sigma & =9.6306 \cdot \frac{P_{a}}{T_{a}} & 1.3
\end{array}
$$

where

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{a}}=\text { atmospheric pressure, }{ }^{\prime} \mathrm{Hg} \\
& \mathrm{~T}_{\mathrm{a}}=\text { atmospheric temperature, }{ }^{\circ} \mathrm{K} \\
& \rho=\text { atmospheric density, slugs } / \mathrm{ft}^{3} \\
& \mathrm{R}=\text { the gas constant for dry air, } 3089.7 \mathrm{ft}^{2} / \mathrm{sec}^{2}{ }^{\circ} \mathrm{K} \\
& \sigma=\text { density ratio, } \rho / P_{S L}
\end{aligned}
$$

(3) Hydrostatic equilibrium exists:

$$
\mathrm{dP} \mathrm{a}_{\mathrm{a}}=-\rho \mathrm{gdh}
$$

This equation is derived from a consideration of the forces acting in the vertical direction on a small column of air of unit area. (See Figure 1.1)

Figure 1.1
Forces Acting on a Small Column of Air of Unit Area
(4) The measure of vertical displacement is geopotential. Geopotential is a measure of the gravitational potential energy of a unit mass at a point relative to mean sea level. It is defined in differential form by the equation

$$
G d H=g d h
$$

where
$h=t a p e l i n e$ altitude; i.e., the actual distance from mean sea level to a point in the atmosphere, feet
g = acceleration due to gravity at the same point, feet/sec ${ }^{2}$
$H=$ geopotential at the point, geopotential feet
$G=a \operatorname{dimensional}$ constant, $32.17405 \mathrm{ft}^{2} / \mathrm{sec}^{2}$ - geopotential feet) for the above system of units
Each point in the atmosphere has a definite geopotential as" g° is a function of latitude and altitude.
(5) Sea level pressure is 760 mm Hg or 29.92126 inches Hg
(6) Sea level temperature is $15^{\circ} \mathrm{C}$ or $288.16^{\circ} \mathrm{K}$
(7) Temperature variation with geopotential is expressed as a series of straight line segments:
(a) The temperature lapse rate in the troposfinere (sea level to 36,089 geopotential feet) is $0.00198120^{\circ} \mathrm{C} /$ geopotential feet.
(b) The temperature above 36,089 geopotential feet and below 82,021 geopotential feet is constant $-56.50^{\circ} \mathrm{C}$. (The latest issue of "The ARDC Model Atmosphere" should be consultec for data above 82,021 geopotential feet.)
1.1.2 Relationship Between Variables:

From the basic assumptions listed above it is possible to express the atmospheric pressure, temperature, and density as functions of geopotential.

Introducing the definition of geopotential (Equation 1.5) into the equilibrium equation 1.4,

$$
d P_{a}=-\rho G d H
$$

Eliminatirg ρ by means of the perfect gas equation 1.1 ,

$$
\frac{d P_{a}}{P_{a}}=-\frac{G}{R} \frac{d H}{T_{a}}
$$

Assumption(7) above expresses

$$
T_{a}=f_{1}(H) \text { only. }
$$

Hence. integration of equation 1.7 is possible with the result

$$
P_{a}=f_{2}(H) \text { only. }
$$

Finally, from the perfect gas equation,

$$
\rho=f_{3}(H) \text { only. }
$$

For geopotentials below 36, 089 geopotential feet

$$
\begin{array}{ll}
\theta=\frac{T_{a}}{T_{a S L}}=\left(1-K_{1} H\right) & 1.8 \\
\delta=\frac{P_{a}}{P_{a S L}}=\left(1-K_{1} H\right)^{5.2561} & 1.9 \\
\sigma=\frac{\rho}{\rho_{S L}}=\left(1-K_{1} H\right)^{4.2561} & 1.10
\end{array}
$$

where

$$
K_{1}=6.87535 \times 10^{-6} / \text { geopotential feet }
$$

For geopotentials above 36,089 geopotential feet and below 82,021 geopotential fect

$$
\begin{align*}
\mathrm{T}_{\mathrm{a}} & =-56.50^{\circ} \mathrm{C}=216.66^{\circ} \mathrm{K} \\
\delta & =\frac{\mathrm{P}_{\mathrm{a}}}{\mathrm{P}_{\mathrm{aSL}}}=0.223358 e^{-\mathrm{K}_{2}\left(\mathrm{H}-\mathrm{K}_{3}\right)} \\
\sigma & =\frac{\rho}{\rho S L}=0.29707 e^{-\mathrm{K}_{2}\left(\mathrm{H}-\mathrm{K}_{3}\right)}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{K}_{2}=4.80634 \times 10^{-5} / \text { geopotential feet } \\
& \mathrm{K}_{3}=36,089.24 \text { geopotential feet }
\end{aligned}
$$

From the above equations, pressure, temperature, and density, plus several other parameters useful in flight test are tabulated in Table 9.2 for incremental geopotentials of 100 geopotential feet. In addition, P_{a} in inches Hg and δ are tabulated in Table 9.3 for every 10 geopotential feet. A summary of basic data is given in Table 9.1.
1.1.3 Determination of Tapeline Altitude:

In flight testing, the exact position in space is usually not important; altitude is important only as a means of describing the properties of the air through which the test aircraft is flying. Hence, it
is seldorn necessary to determine tapeline altitude. It is sufficient to express the armospheric properties in terms of geopotential.

If one finds it necessary to determine the tapeline altitude, the acceleration of gravity as a function of tapeline altitude must be defined to allow integration of equation 1.5 . An approximate expression is obtained by assuming that the altitude variation of the acceleration of gravity from its sea level value is given by the Newtonian inverse square law*

$$
g=\operatorname{gSL}\left(\frac{r}{r+h}\right)^{2}
$$

where

$$
\begin{aligned}
\text { gSL }= & \text { the sea level value of the acceleration of gravity, } \\
& 32.17405 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

$r=$ radius of the earth, $20,930,000$ feet
$h=t a p e l i n e ~ a l t i t u d e, ~ f e e t$.
Introducing this expression into equation 1.5 and integrating yields

$$
H=\frac{g S L}{G}\left(\frac{r h}{r+h}\right)
$$

where

$$
G=32.17405 \mathrm{ft}^{2} / \mathrm{sec}^{2} \cdot \text { geopotentia، feet }
$$

Solving for $h-H(G / g S L)$

$$
h-H\left(\frac{G}{g_{S L}}\right)=\frac{H^{2}\left(\frac{G}{g_{S L}}\right)^{2}}{\left(r-H \frac{G}{g_{S L}}\right)}
$$

where

$$
\mathrm{G} / \mathrm{g}_{\mathrm{SL}}=1 \mathrm{ft} / \mathrm{geopotential} \text { feet }
$$

A plot of altitude correction factor, $h-H(G / g S L)$, versus $H\left(G / g_{S L}\right)$ is given in Chart 8.1. This factor, when added to the geopotential,

[^0]$\mathrm{H}\left(\mathrm{G} / \mathrm{g}_{\mathrm{SL}}\right)$, will give the corresponding tapeline altitude.
1.2 THE NON-STANDARD ATMOSPHERE

Flight test data is always reduced to a standard day so that comparison may be made among data obtained on different days. The usual technique is to present the data in terms of pressure altitude. (Pressure altitude is defined as the geopotential at which a given pressure is found in the standard atmosphere.) Whether four.今 in a standard atmosphere or nonstandard atmosphere, any given pressure indicates one and only one corresponding pressure altitude. Therefore, reduction to a standard day consists of making corrections for temperature to the value given in the standard atmosphere coresponding to the test day pressure altitude (or pressure).

The pressure altitude and geopotential are not simply related on a nonstandard day. If the geopotential is desired, it is neceasary to make a survey of the atmosphere to determine T_{a} as a function of P_{a} to allow integration of equation 1.7. Fortunately, this operation is seldom required. However, the computation is outlined in NACA Report No. 538, 'Altitude - Pressure Tables Based on the United States Standard Atmosphere".

SECTION 2

THEORY OF ALTITUDE, AIRSPEED, MACH NUMBER AND AIR TEMPERATURE MEASUREMENT

Pressure altitude, airspeed, Mach number and free air temperature are basic parameters in the performance of aircraft. The instruments used to measure these quantities are the altimeter, the airspeed indicator, the machmeter, and the free air temperature probe. The basic theory of the construction and calibration of these instruments is given in this section. The actual methods employed in their calibration will be given in subsequent sections.

2.1 THE ALTIMETER

Most altitude measurements are made with a sensitive absolute pressure gage, called an altimeter, scaled so that a pressure decrease indicates an altitucie increase in accordance with the U.S. Standard Atmosphere. If the altimeter setting* is 29.92 , the altimeter will read pressure altitude whether in a standard or non-standard atmosphere.

$$
\begin{aligned}
& \frac{P_{a}}{P_{a S L}}=\left(1-6.87535 \times 10^{-6} H_{c}\right)^{5.2561} \\
& \quad \text { for } H_{c}<36,089 \mathrm{ft} \\
& \frac{P_{a}}{P_{a S L}}=0.223358 e^{-4.80634 \times 10^{-5}\left(H_{c}-36,089.24\right)} \\
& \quad \text { for } 36,089<H_{c}<82,021 \mathrm{ft}
\end{aligned}
$$

where

$$
\begin{aligned}
& P_{a}=\text { atmospheric pressure, inches } \mathrm{Hg} \\
& \mathrm{H}_{\mathrm{c}}=\text { pressure altitude, feet } \\
& \mathrm{P}_{\mathrm{aSL}}=29.92126 \text { inches } \mathrm{Hg}
\end{aligned}
$$

[^1]The altimeter is constructed and calibrated according to this relationship.
The heart of the altimeter is an evacuated metal bellows which expands or contracts with changes in outside pressure. The bellows is connected to a series of geara and levers which cause a pointer to move as the bellows expands or contracts. The whole mechanism is placed in an airtight case which is vented to a static pressure source; the indicator then reads the pressure supplied to the case. The dial is calibrated to indicate pressure altitude. The altimeter construction is shown in Figure 2.1

The static pressure measured at the static source of the altimeter (P)) may differ slightly from the atmospheric pressure (P_{2}). For any
P_{S}, the altimeter, when corrected for instrument error, will indicate the corresponding indicated pressure altitude corrected for instrument error (H_{ic})

$$
\begin{align*}
\frac{P_{S}}{P_{\mathrm{aSL}}}= & \left(1-6.87535 \times 10^{-6} \mathrm{H}_{\mathrm{ic}}\right)^{5.2561} \\
& \text { for } \mathrm{H}_{\mathrm{ic}}<36,089 \mathrm{ft} \\
\frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{PaSL}=} & 0.223358 \mathrm{e}^{-4.80634 \times 10^{-5}\left(\mathrm{H}_{\mathrm{ic}}-36,089.24\right)} \\
& \text { for } 36,089<\mathrm{H}_{\mathrm{ic}}<82,021
\end{align*}
$$

The quanticy $P_{s}-P_{a}$ is called the static pressure error or position error. The value which is added to H_{i} to determine H_{c} is termed the altimeter position error correction. The position error corrections for the altimeter and the other instruments will be considered in later sections.

The altimeters available and their expected characieristics are:

$\frac{\text { Type }}{C-12} \quad 0 \frac{\text { Range }-\mathrm{ft}}{50,000} \quad \frac{\text { Readability }-\mathrm{ft}}{5} \quad \frac{\text { Repeatability }}{$| Determined by |
| :--- |
| calibration |}

2. 2 THE AIRSPEED INDICATOR

True airspeed $\left(V_{t}\right)$ is the velocitv of an aircraft with respect to the air through which it is flying. It is difficult to measure V_{t} directly. Instead, it is usually determined from calibrated airspeed (V_{c}), atmospheric pressure (P_{a}), and atmospheric temperature (T_{a}). V_{c} is obtained from a conventionai airspeed indicator, P_{a} is measured with an altimeter, and T_{a} is measured with a free air temperature probe.

Whe instrument erroris an error built into the instrument consisting of such things as scale error and hysteresis. This error is discussed in Section 3.

The airspeed andicator operates on the principle of Bernoulli's compressible equation for frictionless adiabatic (isentropic) flow in which airspeed is expressed as the differerice between total and static pressures Therefore, the airspeed indicator consists of a pitot-siatic pressure system which is used to measure the difference between total and static pressures.

At subsomis speecis liernoulli's equation expressed as follows is applicable

$$
\frac{Q_{c}}{P_{a}}=\left[1+\frac{r-1}{2}\left(\frac{V_{1}}{a}\right)^{2}\right] \frac{r}{r^{-1}}-1 \quad 2.5
$$

where;

$$
\begin{aligned}
\mathrm{q}_{\mathrm{c}}= & \mathrm{P}_{\mathrm{t}} \text { - } \mathrm{P}_{\mathrm{a}}=\text { differenifal pressure. (This is equal } \\
& \text { to the free stream impact pressur e or compressible } \\
& \text { dynamir pressure }\left(\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{a}}\right) \text { for subsonic flow) } \\
\mathrm{P}_{\mathrm{t}}= & \text { frec stream total pressure } \\
\mathrm{P}_{\mathrm{a}}= & \text { free stream static pressure (or atmospheric pressure) } \\
\mathrm{F}= & \text { ratio of specific heats } \\
\mathrm{V}_{\mathrm{t}}= & \text { true eirspeed } \\
\mathrm{a}= & \text { local atmospheric speed of sound }
\end{aligned}
$$

For air, $\hat{y}=1.40$. Equation 2.5 becomes

$$
\frac{q_{c}}{P_{a}}=\left[1+0.2\left(\frac{v_{l}}{a}\right)^{2}\right]^{3.5}-1 \quad 2.6
$$

For supersonic flight, a shock wave will form in front of the total pressure probe. Therefore equation (2.5, 2.6) is no longer valid. The solution for supersonic flight is derived by considerang a normal sionck compression in front of the total pressure tube and an isentropic compression in the subsonic region aft of the shock. The normal shock assumption is good as the plot tube has a small frontal area so that the radius of the shock in front of the hole may be considered infinite. The resulting equation known as the Rayleigh supersonir pito: equation, relates the total presstire behand the shosk to the free stream ambient
pressure.

$$
\frac{q_{c}}{P_{a}}=\left[\frac{\gamma+1}{2}\left(\frac{V_{1}}{a}\right)^{2}\right]^{\frac{\gamma}{\gamma-1}}\left[\frac{\gamma+1}{1-\gamma+2 \gamma\left(\frac{V_{1}}{a}\right)^{2}}\right]^{\frac{1}{\gamma-1}-1}
$$

where

$$
\begin{aligned}
q_{c}= & P_{t}^{\prime}-P_{a}=\text { differential pressure. (This is not equal } \\
& \text { to the freestream impact pressure or compressible } \\
& \text { dynamic pressure, } P_{t}-P_{a} \text {, for supersonic flow as } \\
& \left.P_{t}^{\prime} \neq P_{t} .\right)
\end{aligned}
$$

For air, $\gamma=1.40$. Equation 2.7 becomes

$$
\frac{q_{c}}{P_{a}}=\frac{7\left(\frac{V_{t}}{a}\right)^{2}-1}{6}\left\{\frac{36\left(\frac{V_{t}}{a}\right)^{2}}{5\left[7\left(\frac{V_{t}}{a}\right)^{2}-1\right]}\right\}^{3.5}-1
$$

This may be written more conveniently in the form

$$
\frac{q_{c}}{P_{a}}=\frac{K_{3}\left(\frac{V_{t}}{a}\right)^{7}}{\left[7\left(\frac{V_{t}}{a}\right)^{2}-1\right]^{2.5}}-1
$$

where

$$
K_{3}=\frac{(7.2)^{3.5}}{6}=166.921
$$

Examination of equations (2.5, 2.6) and (2.7. 2.8, 2.9) shows that the true velocity $\left(V_{t}\right)$ is dependent on the local atmospheric properties, speed of sound (a), and static pressure (P_{a}), as well as the differential pressure $\left(q_{c}\right)$. Therefore, an airspeed indicator measuring dia: . ntial pressure cart be made to read irue airspeed at one and only one art plitic condition. Standard sea level is taken for this condition. iterefore, the dial of the airspeed indicator is scaled so that a given differential pressure will indicate a speed in accordance with equations 2.6 and (2.8, 2.9) in which sea level standard a and P_{a} are inserted. This sea level standard value of V_{t} is defined as calibrated airspeed $\left(V_{c}\right)$.

$$
\frac{q_{S}}{\mathrm{P}_{\mathrm{aSL}}}=\left[1+0.2\left(\frac{\mathrm{v}_{c}}{\mathrm{a}_{S L}}\right)^{2}\right]^{3.5}-1
$$

for $V_{c} \leq a S L$, and

$$
\frac{q_{C}}{P_{a S L}}=\frac{166.921\left(\frac{V_{C}}{a S L}\right)^{7}}{\left[?\left(\frac{v_{C}}{a S L}\right)^{2}-1\right]^{2.5}}-1
$$

for $V_{c} \geq a_{S L}$.
where

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{c}}=\text { differential pressure, inches } \mathrm{Hg} \\
& \mathrm{~V}_{\mathrm{c}}=\text { calibrated airspeed, knots } \\
& \text { asL }=661.48 \text { knots } \\
& \mathrm{P}_{\mathrm{aSL}}=29.92126 \text { inches } \mathrm{Hg}
\end{aligned}
$$

Airspeed indicators are constructed and calibrated according to these equations.

In operation, the airspeed indicator is similar to the altimeter, but, instead of berng evacuated, the inside of the capsule is connected to a total pressure source and the case to the static pressure source. The instrument then senses total pressure ($P_{t}{ }^{\prime}$) within the capsule and static pressure $\left(P_{s}\right)$ outside it as shown in Figure 2.2.

Figure 2.2
Airspeed Indicator Schematic

For any indicated differential pressure ($q_{c i c}$) felt by the instrument, the airspeed indicator, when corrected for instrument error, will Indicate the corresponding indicated airspeed corrected for instrument error (V_{ic}) or

$$
\frac{q_{c i c}}{{ }_{C_{S L}}}=\left[1+0.2\left(\frac{v_{i c}}{a_{S L}}\right)^{2}\right]^{3.5}-1
$$

for $V_{i c} \leq a_{S L}$ and

$$
\frac{q_{\mathrm{cic}}}{\mathrm{P}_{\mathrm{aSL}}}=\frac{166.921\left(\frac{\mathrm{~V}_{\mathrm{ic}}}{\mathrm{a}_{\mathrm{SL}}}\right)^{7}}{\left[7\left(\frac{V_{\mathrm{ic}}}{\mathrm{a}_{\mathrm{SL}}}\right)^{2}-1\right]} 2.5-1
$$

for $V_{i c} \geq a_{S L}$.
In the general case, $q_{c i c}$ will differ from q_{c} as a result of static pressure error. As a result, an arspeed position error correction must be added to V_{ic} to obtain V_{c}, the desired result. This correction will be discussed in later sections.

Gcic in inches Hg is given for varıous values of V_{i} in knots in Table 9.5. This table is also good as q_{c} in inches $H g$ versus V_{c} in knots.

At the present time, the following airspeed indicators are commonly used in flight test work.

Type	Range	Readability	Repeatability
F-1	50 to 650 knots	0.5 knots	Determined by calibraizon
059	50 to 850 knots	0.5 knots	
0153	10 to 150 miles per hour	0.5 moles per hour	

Calibrated arspeed $\left(V_{c}\right)$ represents the true velocity of the alrcraft $\left(V_{t}\right)$ at standard sea level conditions only. V_{t} may be determined at altitude by a knowledge of armospheric pressure and density (or temperature).

The equivalent airspeed (V_{e}) is defined as

$$
v_{e}=v_{i} \sqrt{\sigma}
$$

where σ is the density ralio, $\rho / \mathrm{PSL}_{\mathrm{S}}$.
Solving the subsonic equation 2.6 for $V_{1}{ }^{2}$.

$$
v_{1}^{2}=5 a^{2}\left[\left(\frac{q}{p} a+1\right)^{2 / 7}-!\right]
$$

The speed of sound in a perfect gas may be expressed as

$$
a=\sqrt{\frac{r P_{a}}{p}}
$$

Introducing $V_{e}{ }^{2} / \sigma$ for $V_{t}{ }^{2}$ and replacing $a^{2} \sigma$ by $\mathrm{r}_{\mathrm{a}} / \rho_{\mathrm{SL}}$:

$$
\mathrm{V}_{\mathrm{e}}=\sqrt{\frac{7 \mathrm{P}_{\mathrm{a}}}{\rho_{\mathrm{SL}}}\left[\left(\frac{q_{c}}{\mathrm{P}_{a}}+1\right)^{2 / 7}-1\right]}
$$

Introducing equation 2.10, the following result is obtained:

$$
\frac{V_{e}}{V_{c}}=\left\{\left[\frac{\left(\frac{q_{c}}{P_{a}}+1\right)^{2 / 7}-1}{\left(\frac{q_{c}}{P_{a S L}}+1\right)^{2 / 7}-1}\right] \frac{p_{a}}{P_{a S L}}\right\}^{\frac{1}{2}}
$$

From equation 2.14, V_{t} is simply V_{e} corrected for the difference between sea level standard density and actual ambient density. This has been shown for subsonic flight only. It could similarly be shown to be true for supersonic flight as well.

This relationship between V_{c} and V_{t} is presented for explanation only; a shorter method of obtaining V_{t} from the same required variables is given later in Section 2.5.

2.3 MACH NUMBER AND THE MACHMETER

2.3.1 Mach Number:

Mach number (M) is defined as the ratio of the true airspeed to the local atmospheric speed of sound

$$
\begin{equation*}
M=\frac{V_{t}}{a} \tag{2. 19}
\end{equation*}
$$

With the advent of high speed aircraft, Mach number has become a very important parameter in flight testing.

For isentropic flow of a perfect gas, Bernoulli's equation states

$$
\frac{P_{t}}{P_{a}}=\left(1+\frac{r-1}{2} M^{2}\right) \frac{r}{r^{-1}}
$$

where

$$
\begin{aligned}
& P_{t}=\text { free stream total pressure } \\
& P_{a}=\text { free stream static pressure } \\
& \gamma=\text { ratio of specific heats }
\end{aligned}
$$

For air, $\gamma=1.40$. Equation 2.20 becomes

$$
\begin{equation*}
\frac{P_{t}}{P_{a}}=\left(1+0.2 M^{2}\right)^{3.5} \tag{2. 21}
\end{equation*}
$$

This equation which relates Mach number to the free stream total and static pressires is good for supersonic as well as subsonic flight. It
must be remembered however, that P_{t} rather thati P_{t} is measured in supersonic flight.

2.3.2 The Machmeter:

The Machmeter equation for subsonic flight is formed by inserting the definition for M into equation 2.6.

$$
\begin{equation*}
\frac{q_{c}}{p_{a}}=\left(1+0.2 M^{2}\right)^{3.5}-1 \tag{2. 22}
\end{equation*}
$$

Solving for M

$$
M=\sqrt{5\left[\left(\frac{q_{c}}{P_{a}}+1\right)^{2 / 7}-1\right]}
$$

For supersonic flight, from equation 2.9

$$
\begin{equation*}
\frac{Q_{c}}{P_{a}}=\frac{166.921 M^{7}}{\left(7 M^{2}-1\right)^{2.5}}-i \tag{2. 24}
\end{equation*}
$$

Equation $\therefore .2$. cannot be solved explicitly for M. It can, however, de put . . the following form which is convenient for rapid iteration:

$$
M=\sqrt{\left(\frac{q_{c}}{P_{a}}+1\right) \frac{1}{K_{4}}\left(1-\frac{1}{7 M} 2\right)^{\frac{5}{2}}}
$$

where

$$
K_{4}=1.287560
$$

The mainmeter is essertially a combination altimeter and airspeed ind:-ator designed to solve these cquations for Mach number. Ar ditimeter capsule and an airspeed capsule simultaneously supply signals \because a series of gears and levers to produce the Mach number indication. \therefore macrmeter schematic is given in Figure 2. 3.

Figure 2. 3
Machineter Schematic

For any static pressure (P_{B}) and differential pressure ($q_{c i c}=P_{t}^{\prime}-P_{B}$) felt by the instrument, the Mach meter, when corrected for instrument error, will indicate the corresponding indicated Mach number corrected for instrument error ($M_{i c}$), or

$$
\frac{q_{c i c}}{P_{B}}=\left(1+0.2 \mathrm{M}_{\mathrm{ic}}{ }^{2}\right)^{3.5}-1
$$

for $M_{i c} \leqslant 1.00$, and

$$
\frac{q_{c i c}}{P_{s}}=\frac{166.921 M_{i c}{ }^{7}}{\left(7 M_{i c}^{2}-1\right)^{2.5}}-1
$$

for $M_{i c} \geqslant 1.00$.
The true Mach number (M) is determined from $M_{i c}$ and the Nach meter position error correction which is a result of the static pressure error, $P_{B}-P_{a}$.

These equations relating M to q_{c} / P_{a} and $M_{i c}$ to $q_{c i c} / P_{s}$ are useful not only as machmeter equations, but as a means for relating calibrated airspeed and pressure altitude to Mach number. $M_{i c}$ is given for values of $\mathrm{q}_{\mathrm{cic}} / \mathrm{P}_{\mathrm{s}}$ for $\mathrm{M}_{\mathrm{ic}} \leq 1.00$ in Table 9.4. $\mathrm{q}_{\mathrm{cic}} / \mathrm{P}_{\mathrm{s}}$ is given for values of $M_{i c}$ from 1.00 to 3.00 in Table 9.5. These tables can also be used to find M as a function of q_{c} / P_{a}.

At present the accuracy of these meters is poor so that they are not suitable for precision work, but as flight-safety indicators only. The machmeters in general use are:

Type	Range	Readability	Repeatabilic;
Al	$\begin{aligned} & 0.3 \text { to } 1.0 ; 0 \text { to } \\ & 50,000 \mathrm{feet} \end{aligned}$	0.01	Determined by calibration
A2	$\begin{aligned} & 0.5 \text { to } 1.5 ; 0 \text { to } \\ & 50,000 \text { feet } \end{aligned}$	0.01	
G09501	$\begin{aligned} & 0.7 \text { to } 2.5 ; 0 \text { to } \\ & 60.000 \text { feet } \end{aligned}$	0.01	

2. 4 FREE AIR TEMPERATURE PROBE

The atmospherac temperature is a measurement of the internal thermal energy of the air. Therefore, it is a very important parameter in aircraft and engine performance. Unfortunately, it is difficult to measure accurately in flight. If the air surrounding the probe is brought to a complete stop adiabatically and the probe correctly senses the resulting temperature then

$$
\begin{equation*}
\frac{I_{j} \varepsilon}{T_{a}}=\frac{T_{1}}{T_{a}}=1+\frac{M-1}{2} M^{2} \tag{2. 28}
\end{equation*}
$$

where
$\mathrm{T}_{\mathrm{ic}}=\begin{aligned} & \text { indicated temperature corrected for instrument } \\ & \text { error, }{ }^{\circ} \mathrm{K}\end{aligned}$
$\mathrm{T}_{\mathrm{t}}=$ total temperature, ${ }^{\circ} \mathrm{K}$
$\mathrm{T}_{\mathrm{a}}=$ free stream static temperature, ${ }^{\circ} \mathrm{K}$
$\mathrm{M}=$ free stream Mach number

For various reasons, such as radiation or heat leakage, most probes
do not register the full adiabatic temperature rise. It is, however, acceptable to write

$$
\frac{\mathrm{T}_{1 c}}{\mathrm{~T}_{\mathrm{a}}}=1+K \frac{r-1}{2} \mathrm{M}^{2}
$$

For air with $=1.40$, this becomes

$$
\frac{\mathrm{T}_{\mathrm{ic}}}{\mathrm{~T}_{\mathrm{a}}}=1+K{\frac{M^{2}}{5}}^{2}
$$

The value of K represents the percentage of the a abatic temperature rise detected by the probe and is called the probe recovery factor. For many installations it may be considered a constant, but it may vary with altitude and Mach number, particularly at supersonic speeds. K seldom is less than 0.90 for test installations and is lisually between 0.95 and 1.00. Methods for determining K for a given installation are discussed in Section 6. 2.

Equation 2.30 is plotted in Chart 8.2 as $\mathrm{T}_{\mathrm{ic}} / \mathrm{T}_{\mathrm{a}}$ versus M for constant K and as T_{a} versus M for constant $t_{i c}$ and K.

The frce air thermometers now in use are all of the electrical resistance type. Their operation is based on the fact that the resistances of the sensing elements change with temperature. To obtain a signal from such a temperature sensing unit the clement is placed in a bridge circuit. The circuit is designed so that the indicator registers the ratio of the current flow in two legs which maikes the indication independent of the source voltage suppiy. (Sec Figure 2.4.)

Figure 2.4
Resistance Temperature Bulb Bridge Circuit

The indicator consists of an ameter whose armature containa both indicator colls wound so that the indication is proportional to the two currents. (See Figure 2.5)

Construction of Resistance Temperature Bulb Indicator

The following instrument is in general use:

Type	Range	Readability	Accuracy
C-10	-60 to +60 degrees C (or other range as desired)	0.5 degrees C	± 0.5 degrees C

2.5 THE CALCULATION OF EQUIVALENT AIRSPEED, MACH NUMBER, AND STANDARD DAY TRUE AlRSPEED

2.5.1 Equivalent Airspeed:

The equivalent airspeed $\left(\mathrm{V}_{e}\right)$ is frequently used as a basis for reducing flight test data for piston-engined airplanes as it is a direct. measure of the free stream dynamic pressure (q),

$$
q=\frac{1}{2} \rho V_{t}^{2}=\frac{1}{2} \rho_{E L} V_{e}^{2}=K V_{e}^{2}
$$

V_{e} may be expressed in terms of pressure altitude (H_{c}) and Mach number (M) as

$$
\frac{V_{e}}{M}=a \sqrt{a}
$$

This equation is plotted in Chart 8.3 as V_{e} / M versus H_{c}.

2.5.2 Mach Number:

The machmeter in its present form should not be used in precision finght test work as it is not sufficiently accurate. Therefore Mach number must be cietermined bv other means

If the true airspeed and ambient temperature are known, Mach number is defined by the relation

$$
M=\frac{V_{11}}{a_{t}}
$$

where

$$
\begin{aligned}
& V_{1 t}=\text { test day true arspeed } \\
& a_{t}=\text { test day speed of sound }
\end{aligned}
$$

The velocity of sound in a perfect gas is proportional to the square root of the remperature, or

$$
\frac{a_{1}}{a_{S L}}=\overline{\frac{T_{a S}}{T_{a S L}}}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{at}}=\text { test day ambient temperature, }{ }^{\circ} \mathrm{K} \\
& \mathrm{a}_{\mathrm{SL}}=661.48 \text { knots } \\
& \mathrm{T}_{\mathrm{aSL}}=288.16{ }^{-} \mathrm{K}
\end{aligned}
$$

Hence

$$
a_{1}=38.067, \overline{T_{a t}} \text { knots }
$$

and

$$
M=\frac{V_{\mu}(\text { knots })}{38.967 \sqrt{\mathrm{~T}_{\mathrm{al}}\left({ }^{\circ} \mathrm{K}\right)}}
$$

This equation is plotted in Chart 8.4 as V_{1} versus T_{a} for constant Mach number lines.

Inasmuch as the true velocity is seldom available directly, Mach number is more conveniently obtained through the compressible flow equation $(2.23,2.25)$. M is given as a function of q_{c} / P_{a} in Tables 9.4 and 9.5. P_{a} is obtarned from pressure altitude (H_{c}) in the standard atmosphere, Table 9.2 or Table 9.3, and q_{c} is found from V_{c} and T able 9.6.

This information is plotted in Chart 8.5 as Mach number (M) versus calibrated airspeed (V_{c}) for constant pressure altitude (H_{c}). Given any two of these variables the third may be found directly from this chart. Chart 8.5 is also applicable for indicated quantities corrected for instrument error. In this case, the chart may be interpreted as M_{ic} versus V_{ic} for constant H_{ic}.
2.5.3 Standard Day True Airspeed:

In the previous section, Mach number is expressed as a function of pressure altitude and calibrated airspeed; therefore, at a given H_{c} and V_{c}, the test day Mach number is equal to the standard day Mach number.

$$
M_{t e s t}=\frac{V_{t t}}{a_{t}}=M_{s t d}=\frac{V_{t s}}{a_{s}}=M
$$

where

$$
\begin{aligned}
& V_{\mathbf{t s}}=\text { standard day true airspeed } \\
& \mathbf{a}_{\mathbf{s}}=\text { standard day speed of sound }
\end{aligned}
$$

The verity of this statement is evidenced by the fact that Mach number is a function of P_{a} and P_{t} (equation 2.20, 2.21) and therefore can be expressed independent of the ambient temperature. The standard day speed of sound can be expressed as:

$$
a_{s}=38.967 \sqrt{\mathrm{~T}_{\mathrm{as}}}, \text { knots }
$$

where

$$
\begin{aligned}
\mathrm{T}_{\mathrm{as}}= & \text { standard day ambient temperature } \\
& \text { (corresponding to } \mathrm{H}_{\mathrm{c}} \text { in the standard } \\
& \text { atmospnere), }{ }^{\circ} \mathrm{K}
\end{aligned}
$$

Hence,

$$
V_{t s}=38.967 \mathrm{M} \sqrt{\mathrm{~T}_{\mathrm{as}}}, \quad \text { knots }
$$

where T_{as} is in ${ }^{\circ} \mathrm{K}$. This equation is plotied in Chart 8.5. This chart can be used to find $V_{t g}$ from M and H_{C}, M and V_{c}, or H_{c} and V_{c}.

にSHにUMENTERKOR •THEORY AND CALIBRATION

Several corrections mus: be applied to the indicated altimeter and alrspeed mindicator readings before pressure altitude and calibrated airspeod can be determined. The ind:cated readings must be corrected for instrumenterror, pressure lagerror and position error, in that order. In level waccelerated filght there will be no pressure lag, in which case the position error correction can be applied directly folluming the mstrment correction. The instrument error is the shbert of lins section The pressure lagerror and pesition error are discussed in seclions \ddagger and 5 .

3.1 INSIRUMENI ERROK

The almmeter and alrsoeed undicator are sensitive to pressure wid pressure diferential respectively, but the dials are calibrated to read altillide and calibrated airspeed according to equations (2. 3, 2.4) a:c $(2.13,2.13)$. It 1 s not possible to perfect an instrument which © \because •epresem such nonlmear equations exactly under all flight conditions As a resuli an error exists called instrument error. Instrument : Yor is the result of several things:
(1) Scale error and manufaciuring discrepancies
(2) livsteresis
(3) Temperature changes
(t) Coulomb and wscous friction
(5, luertia of moving paris
The calibraison of an altameter or arspeed andicator for anstrument error is usti lif conducted in an instrument laboratory. A known pressure ur pressure differential is applied to the anstrument to be tested. The bimtrument error is determined as the difference between this knwwn pressure and the instrument indicated reading. Such thangs as friction and temperalure errors are considered as tolerances same ther are not dependent or the instrument readings.

An instrument with excessive friction or temperature errors should be rejected

Data should be taken in both directions so that the hysteresis can be determined. Hysteresis is then the difference between the "up" and "down" corrections. An instrument with large hysteresis must be rejected as it is difficult to account for this effect in flight.

As an instrument wears, its calibration changes. Therefore, each instrument should be recalibrated periodically. The repeatability of the instrument is determined from the instrument calibration history The repeatability of the instrument must be good for the instrument calibration to be meaningful.

32 THE ALTIMETER

The altimeter is calibrated by placing it in a vacuum chamber where pressure is measured by a mercury barometer. The chamber pressure is varied up and down throughout the range for which the altimeter is intended to be used. Simultaneous readings of the barometer and altimeter are taken. The instrument correction ($\Delta H_{i c}$) is determined as the difference between the instrument corrected and indicated altitudes.

$$
\Delta H_{i c}=H_{i c}-H_{i}
$$

where $H_{i c}$ corresponds to the applied pressure according to equations 2.3 and 2.4. The results are usually plotted as shown in Figure 3.1.

Figure 3.1
Altimeter Instrument Calibration

To use this instrument correction chart, the instrument correction $\left(\Delta H_{i c}\right)$ ia added to the indicated altitude $\left(H_{i}\right)$ to obtain the indicated altitude corrected for instrument error ($H_{i c}$)

$$
H_{i c}=H_{i}+\Delta H_{i c}
$$

In general, at the Air Force Flight Teat Center, the altimeter is calibrated every 1,000 feet ro 20,000 feet and every 2,000 feet for higher altitudes.

3.3 THE AIRSPEED INDICATOR

The airspeed indicator is callbrated by applying a known differential presiure to the instrument to be callbrated. The pressure in varied up and down throughout the range for which the
instrument is intended to be used The instrument correction $\left(\Delta V_{i c}\right)$ is determined as the difference between the instrument corrected and indicated airspeeds.

$$
\Delta V_{i c}=V_{i c}-V_{i}
$$

Where $V_{i c}$ corresponds to the applied differential pressure according to equations 2.12 and 2.13 The results are plotted in the same general form as the altimeter instrument correction the correction is plotted versus the indicated airspeed Touse this instrument coriection chart, the instrument correction $\left(\Delta V_{i c}\right)$ is added to the indicated airspeed (V_{i}) to obtain the indicated airspeed corrected for instrument error ($V_{i c}$)

$$
V_{i c}=V_{i}+\Delta V_{i c}
$$

$$
3.4
$$

At the AFFTC. the airspeed indicator is calibrated every 10 knots throughout the intended speed range

PRESSURE LAG ERROR - THEORY AND CALIBRATION

4.1 PRESSURE LAG ERROR AND THE LAG CONSTANT

The altimeter and airspeed indicatur are subject to an error called pressure lag error. This error exists only when the aircraft in which the instruments are installed is changing airspeed or altitude, as during an acceleration or climb. In this case, there is a time lag between such time as the pressure charge occurs and when it is indicated on the instrument dial. The effect on the altimeter is obvious; as the aircraft climbs, the instrumerit will indicate an altitude less than the actual altitude. In the airspeed indicator, the lag may cause a reading too large or too small depending on the proportion of the lag in the total and static pressure systems. Converted to 'feet" or 'knots', this error is often insignificant. However, it may be significant and should be considered in certain maneuvere such as high speed dives and zoom climbs in which the instrument diaphragms must undergo large pressure rates. Pressure lag is discussed in detail in NACA Report No. 919, "Accuracy of Airspeed Measurements and Flight Calibration Procedures," by Wilbur B. Huston.

Pressure lag is basically a result of:
(1) Pressure drop in the tubing due to viscous friction.
(2) Inertia of the air mass in the tubing.
(3) Instrument inertia and viscous and kinetic friction.
(4) The finite speed of pressure propogation; i.e., acoustic lag A detailed mathematical treatment of the response of such a system would be difficult. Fortinately, a very simple approach is posisible which will supply adequate iag corrections over a large range of flight conditions encompassirg those presently encountered in the performance testing of aircraft In this approach, it is assumed that the pressure system can te adequately represented by a linear first order equation:

$$
-\frac{d F_{1}(t)}{d t^{-}}+\frac{1}{\lambda} P_{i}(t)=\frac{1}{\lambda} P(t)
$$

where

$$
\begin{aligned}
P(t)= & \text { the applied pressure at lime (t). This is } \\
& P_{5} \text { in the case of the altmeter and either } P_{s} \\
& \text { or } P_{1} \text { in the case of the airspeed indicator. } \\
F_{1}(r)= & \text { the indicated pressure at tume (} t) . \\
\lambda= & \text { lag constant }
\end{aligned}
$$

This equation is derived by means of dimensional analysis
The lag constant for lammar flow of air in tubing can be expressed as:

$$
\lambda=\frac{32 \mu L^{2}}{D^{2} \gamma P}\left(1+\frac{Q}{L A}\right)
$$

where
$\mu \because$ coefficient of viscosity of air, slugs/ft-sec
L : length of tubing, feet
D : diameter of tubing, feet
γ ratio of specific heats, 1.4 for air
$P=$ applied pressure, lbs/feet ${ }^{2}$
Q : instrument volume, feet ${ }^{3}$
A : cross-sectional area of tubing, feet ${ }^{2}$
Many assumptions are made in the formulation of the differential equation and in its solution. The most important of these are:
(1) The rate of change of the applied pressure is nearly constant.

$$
P(t)=K t
$$

where $K=\frac{d P}{d t}=$ a constant. This is a good asisumption.
(2) Laminar flow exists. For this to be true, it is nesessary that the Reynolds number (N_{R}) be less than 2000 , where

$$
N_{R} \propto \frac{p}{\mu} \frac{l}{\bar{P}} \frac{d P}{d t}
$$

for a given installation. In typical altimeter and airspeed systems, a N_{R} of $500_{1 s}$ seldom exceeded in flight. Therefore, in laboratory calibrations. pressure rates greater than those encountered in flight should not be applied or erroneous results may be obtained.
(3) The pressure lag is small compared with the applied pressure.

This is generally the case; however, at very high altitudes this assumption becomes critical.
(4) The air and instrument inertias are negligible.
(5) The acoustic lag (τ) is negligible. τ is defined as the time for a pressure disturbance to travel the length of the tubing.

$$
\tau=\frac{L}{c}
$$

where

$$
\begin{aligned}
L= & \text { length of tubing, feet } \\
c= & \text { speed of pressure propogation in the tubing, } \\
& 1000 \text { feet per second for small diameter tubing. }
\end{aligned}
$$

In flight test application, the acoustic lag cortribution is usually small. However, if τ is not small compared to λ, this assumption is not valid and a more detailed analysis such as that outlined in NACA Report No. 919 is necessary.
(6) The pressure drop across orifices and restrictions is negligible. This is true only if a minimum of such restrictions exist so that the tubing is nearly a smooth, straight "pipe" of uniform diameter.
(7) The lag constant (λ) is a constant. This is not strictly true as

$$
\lambda \propto \stackrel{\mu}{\bar{P}}
$$

for a given installation. However, over a small pressure range, λ is nearly constant so that it may be treated as such in the solution of equation 4.1.

The particular solution to the differential equation with these assumptions is:

$$
P_{i}=\frac{d P}{d t}(t-\lambda)
$$

From equation 4.3 and 4.7.

$$
P_{i}=P-\lambda \frac{d P}{d t}
$$

Solving for λ, the definition of the lag constant is

$$
\lambda=\frac{\mathrm{P}-\mathrm{P}_{\mathrm{i}}}{\mathrm{dP} / \mathrm{dt}}
$$

The lag constant for a given static or total pressure system can be determined experimentally by comparing the indicated and applied pressures for a given pressure rate. This can be done in flight or in the laboratory. In either case, the test should be conducted over a small range of pressures so that the assumption that λ is a constant is not violated.

When the lag constant at one value of μ / P is obtained, it may be extrapolated to other conditions by the expression

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{\mu_{1} P_{2}}{\mu_{2} P_{1}}
$$

which is obtained from equation 4.6. Usuaily, the test results are reduced to sea level standard static conditions. Then the lag constant at any value of μ and P can be obtained from the expression

$$
\lambda=\lambda_{S L} \frac{\mu}{\mu_{S L}} \frac{\mathrm{P}_{S L}}{\mathrm{P}}
$$

With the lag constants for the siatic and total pressure systems known, the error in altimeter and airspeed indicator readings due to pressure lag can be calculated for any test point from the basic indicator readings.

Due to the nature of the approximations made in this analysis. is generally not possible to assume that the overall lag error correction can be made with a precision of more than 80 percent Reduction of instrument and line vilumes, however, can usually reduce the system lag errors under any set of conditions to a small percentage of the quantity being measured: in whish case, more precise corrections are not required for practicat rork.

4.2 CORRECTION OF FLiGHT TEST DATAFOR LAC

4.2.1 The Altimeter:

The indicated pressure altitude corrected for instrument error $\left(H_{i c}\right)$ is related to the static pressure (P_{S}) by tise differential
equation:

$$
d P_{s}=-G \rho_{s} d H_{1 c}
$$

where $\quad \rho_{s}=$ the standard day air density.
For small increments, the differentials of equation 4.12 may be assumed to be finite differences.

$$
\Delta P_{s \ell}=-G p_{s} \Delta H_{i c \ell}
$$

where

$$
\begin{align*}
& \Delta P_{s \ell}=\text { the staiic pressurelag: } \\
& \Delta P_{s \ell}=\left(P_{s l}-P_{s}\right)
\end{align*}
$$

where
and

$$
\begin{align*}
& \mathrm{P}_{S}=\text { static pressure corresponding to } H_{i c} \\
& \mathrm{P}_{\mathrm{S} \mathcal{K}}=\text { static pressure at static pressure source } \\
& \Delta \mathrm{H}_{1 \mathrm{C} \ell}=\text { altimeter lagerror correction: } \\
& \Delta H_{i C \hat{K}}=\left(H_{1 C \ell}-H_{i c}\right)
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{H}_{\mathrm{ic}}= & \text { indicated pressure altitude corrected for } \\
& \text { instrument error } \\
\mathrm{H}_{\mathrm{ic}}= & \text { indicated pressure altitude corrected for } \\
& \text { instrument and lagerror }
\end{aligned}
$$

The lag constant for the static pressure system (λ_{s}) can be defined from equation 4.9 as:

$$
\lambda_{s}=\frac{P_{s \ell}-P_{s}}{d P_{s \ell} / d t}=\frac{\Delta P_{s \ell} \ell}{d P_{s \ell} / d t}
$$

With the approximation that

$$
\frac{d P_{S} s}{d t}=\frac{d P_{S}}{d t}
$$

equation 4.16 can be written as

$$
\lambda_{s}=\frac{\Delta P_{s} Q}{d P_{s} / d_{1}}
$$

Substituting for $\Delta \mathrm{P}_{\mathrm{s}} \mathrm{l}$ and $\mathrm{dP}_{\mathrm{s}} / \mathrm{dt}$

$$
\Delta \mathrm{H}_{\mathrm{ic} \ell}=\lambda_{\mathrm{s}} \frac{\mathrm{dH}}{\mathrm{dt}} 2 \mathrm{c}
$$

From equation 4.11

$$
\lambda_{s}=\lambda_{s S L} \frac{\mu}{\mu_{S L}} \frac{P_{a S L}}{P_{s}}
$$

where $\lambda_{5 S L}$ is the $1 g$ constant for the static pressure system at standard sea level conditions.

For convenience in plotting, equation 4.20 is rewritten as

$$
\lambda_{s}=\lambda_{s S L} \frac{\lambda_{S} H_{1 c}}{\lambda_{s} S L} \frac{\lambda_{6}}{\lambda_{6 H_{i c}}}
$$

where

$$
\begin{align*}
& \frac{\lambda_{s H_{j c}}}{\lambda_{s S L}}=\frac{\mu_{\mathrm{H}_{2 c}}}{\mu_{\mathrm{SL}}} \frac{P_{a S L}}{P_{s}} \\
& \frac{\lambda_{s}}{\lambda_{\mathrm{sH}}}=\frac{\mu}{\mu_{\mathrm{ic}}}=\frac{\mathrm{T}_{\mathrm{ic}}}{\mathrm{~T}_{\mathrm{as}}}
\end{align*}
$$

The approximation of equation 4.23 is very good for the usual case where the difference between the test and standard day temperatures is small.

Equation 4.22 is ploted as the STATIC LINE of Chart 8.61 in the form

$$
\frac{\lambda_{H_{i C}}}{\lambda_{S L}} \text { versus } H_{i c} \text { for } V_{i c}=0(S T A T I C)
$$

(The parameter $V_{i c}$ included on this chart is used in the determination of the total pressure lag constant.)

Equation 4.23 is plotted in Chart 8.62 as

$$
\frac{\lambda}{\lambda \cdot \mathrm{H}_{\mathrm{ic}}} \text { versus } \mathrm{H}_{\mathrm{ic}} \text { for } \mathrm{t}_{\mathrm{at}}\left({ }^{\circ} \mathrm{C}\right)
$$

In summary, the calculation for altimeter lag error correction $\left(\Delta H_{i c} \rho\right)$ at any test point $\left(H_{1 c}, t_{a t}, d H_{i c} / d t\right)$ is then:

$$
\Delta H_{i c l}=\frac{\lambda_{s}}{60} \frac{d H_{i c}}{d t}
$$

where

$$
\lambda_{s}=\lambda_{s S L} \frac{\lambda_{s} H_{i c}}{\lambda_{s} S L} \frac{\lambda_{s}}{\lambda_{s} H_{i c}}
$$

with

$$
\begin{aligned}
& \mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}=\text { indicated rate -of climb corrected for instrument } \\
& \text { error, feet/minute } \\
& \lambda_{s S L}=\text { sea level static pressure lag constant, from } \\
& \text { previous calibration, sec } \\
& \frac{\lambda_{\text {sHic }}}{\lambda_{\mathrm{sSL}}} \text { from Chart } 8.61 \text { for } \mathrm{H}_{\mathrm{ic}}, \mathrm{~V}_{\mathrm{ic}}=\text { STATIC } \\
& \frac{\lambda_{s}}{\lambda_{s H_{i c}}} \text { from Chart } 8.62 \text { for } \mathrm{H}_{\mathrm{ic}}, \mathrm{t}_{\mathrm{at}}\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

The indicated altitude corrected for instrument and lagerror is then

$$
\mathrm{H}_{\mathrm{ic} \ell}=\mathrm{H}_{\mathrm{ic}}+\Delta \mathrm{H}_{\mathrm{ic}} \ell
$$

An example of the calculation of H_{ic} 部 given with Chart 8.6.
A.2.2 The Airspeed Indicator:

The differential pressure corresponding to the indicated airspeed corrected for instrument error may be given as,

$$
q_{c i c}=P_{t}^{\prime}-P_{s}
$$

where

$$
\begin{aligned}
\mathbf{P}^{\prime}= & \text { total pressure felt by the total pressure } \\
& \text { diaphragm of the airspeed indicator } \\
\mathbf{P}_{\mathbf{s}}= & \text { static pressure felt by the static pressure } \\
& \text { diaphragm of the airspeed indicator }
\end{aligned}
$$

With any lag in the total and static pressure systems accounted for,

$$
q_{\text {cic } l}=P_{t} \ell-P_{s l}
$$

where

$$
\begin{aligned}
P_{t} \ell= & \text { total pressure applied to total pressure source } \\
& \text { ot pitot static system } \\
P_{s l}= & \text { static pressure applied to static pressure } \\
& \text { source of pitot static system }
\end{aligned}
$$

Defining the differential pressure error due to lag ($\Delta q_{\text {dice }}$) as

$$
\Delta q_{\text {cicl }}=q_{\text {cicl }}-q_{\text {cic }}
$$

it follows from equation 4.9 that

$$
\begin{align*}
\Delta q_{\text {cicl }} & =\left(P_{t \ell}^{\prime}-P_{t}^{\prime}\right)-\left(P_{s l}-P_{s}\right) \\
& =\lambda \frac{d P_{t \ell}^{\prime}}{d t}-\lambda{ }_{s} \frac{d P_{s l}^{d t}}{}
\end{align*}
$$

Differentiating 4.27 and dividing by $d t$,

$$
\frac{d q_{c i c \ell}}{d t}=\frac{d P_{t \ell}^{\prime}}{d t}-\frac{d P_{s \ell}}{d t}
$$

Therefore,

$$
\Delta q_{\text {cicl }}^{\text {ore, }}=\lambda_{t} \frac{d q_{\text {cicl }}}{d t}-\left(\lambda_{s}-\lambda_{t}\right) \frac{d p_{s \ell}}{d t}
$$

With the approximations that:

$$
\frac{\Delta q_{c i c \ell}}{d t}=\frac{d q_{c i c}}{d t}-\frac{d P_{s \ell}}{d t}=\frac{d P_{s}}{d t}
$$

equation 4.32 becomes

$$
\Delta q_{c i c l}=\lambda_{t} \frac{d q_{c i c}}{d t}-\left(\lambda_{s}-\lambda_{t}\right) \frac{d P_{s}}{d t}
$$

With the use of the altimeter equation 4.12 which relates $d P_{s}$ to $\mathrm{dH}_{\mathrm{ic}}$, and the airspeed indicator equation (2.12, 2.13) which may be differentiated to give $d q_{c i c}$ as a function of $d V_{i c}$ and $V_{i c}$, equation 4.33 may be modified to give the airspeed indicator lag correction factor ($\Delta V_{i c \ell}$) in terms of $d V_{i c} / \mathrm{dt}$ in knots/sec and $\mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}$ in feet/mirı as dH .

$$
\Delta v_{i c l}=\lambda_{t} \frac{d V_{i c}}{d t}+\frac{\left(\lambda_{s}-\lambda_{t}\right) G \sigma_{s} \frac{d H_{i c}}{d t}}{170.921 V_{i c}\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{2.5}}
$$

for $V_{i c}: a_{S L}$, and

$$
\Delta V_{i c \ell}=\lambda_{t} \frac{d V_{i c}}{d t}+\frac{\left(\lambda_{s}-\lambda_{t}\right) G \rho_{s} \frac{d H_{i c}}{d t}}{224,287\left(\frac{V_{i c}}{a_{S L}}\right)^{6} \frac{\left[2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]}{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]^{3.5}}}
$$

for $V_{i c} \quad{ }^{a}{ }_{S L}$, where

$$
\Delta V_{i c l}=V_{i c l}-V_{i c}
$$

and $V_{i c}=$ indicated airspeed corrected for instrument error
$V_{i c l}=$ indicated airspeed corrected for instrument and lag error This may be written as:

$$
\Delta V_{i c 2}=\lambda_{t} \frac{d V_{i c}}{d t}+\frac{\left(\lambda_{s}-\lambda_{t}\right)}{60} \frac{d H_{i c}}{d t} \times F_{1}\left(H_{i c}, V_{i c}\right)
$$

where

$$
F_{1}\left(H_{i c}, V_{i c}\right)=\frac{G \sigma_{s}}{2.84869 \mathrm{~V}_{\mathrm{ic}}\left[1+0.2\left(\frac{\mathrm{~V}_{\mathrm{ic}}}{\mathrm{a}_{\mathrm{SL}}}\right)^{2}\right]^{2.5}}
$$

for $V_{i c} s a_{S L}$, and

$$
F_{1}\left(H_{i c}, V_{i c}\right)=\frac{G \rho_{S}}{3738.11} \frac{\left[7\left(\frac{v_{i c}}{a_{S L}}\right)^{2}-1\right]^{3.5}}{\left(\frac{V_{i c}}{a_{S L}}\right)^{6}\left[2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]}
$$

for $V_{i c}{ }^{2} a_{S L}$, where σ_{s} and ρ_{s} are measured at $H_{i c} . F_{j}\left(H_{i c}, V_{i c}\right)$ has been plotted versus $V_{i c}$ with $H_{i c}$ as the parameter in Chart 8, 63.

As in the case of the altimeter,

$$
\lambda_{s}=\lambda_{s \mathrm{SL}} \frac{\lambda_{\mathrm{s} \mathrm{H}_{\mathrm{i}} \delta}}{\lambda_{\mathrm{sSL}}} \frac{\lambda_{\mathrm{s}}}{\lambda_{\mathrm{s}}}
$$

Similarly,

$$
\lambda_{\mathrm{t}}=\lambda_{\mathrm{tSL}} \frac{\lambda_{\mathrm{tH}}^{\mathrm{i} \mathcal{L}}}{\lambda_{\mathrm{tS} .}} \frac{\lambda_{\mathrm{t}}}{\lambda_{\mathrm{tH}}}
$$

where

$$
\begin{align*}
& \frac{\lambda_{t H_{i c}}}{\lambda_{\mathrm{tSL}}}=\frac{\mu_{H_{i c}}}{\mu_{S L}} \frac{P_{a_{S L}}}{P_{s}+q_{\mathrm{cic}}} \\
& \frac{\lambda_{\mathrm{t}}}{\lambda_{\mathrm{tH}}}=\frac{\mu}{\mu_{\mathrm{ic}}}=\frac{\mathrm{T}_{\mathrm{at}}}{\mathrm{~T}_{\mathrm{as}}}
\end{align*}
$$

Equation 4.41 has been plotted in Chart 8.61 as

$$
\frac{\lambda_{H_{j c}}}{\lambda_{S L}} \text { versus } H_{i c} \text { for } v_{i c}
$$

Equation 4.42 has been plotted in Chart 8.62 as

$$
\frac{\lambda}{\lambda \mathrm{H}_{\mathrm{ic}}} \quad \text { versus } \mathrm{H}_{\mathrm{ic}} \text { for } \mathrm{tat}^{(}\left({ }^{\circ} \mathrm{C}\right)
$$

In summary, the calculation for airspeed indicator lag error correction $\left(\Delta V_{i c}\right.$?) at any test point ($\left.H_{i c}, t_{a t}, V_{i c}, d V_{i c} / d t, d H_{i c} / d t\right)$ is then:

$$
\Delta V_{i c h}=\lambda_{t} \frac{d V_{i c}}{d t}+\frac{\left(\lambda_{\mathrm{s}}-\lambda_{t}\right)}{60} \frac{d H_{i c}}{\mathrm{dt}} \times F_{1}\left(\mathrm{H}_{\mathrm{ic}}, V_{\mathrm{ic}}\right)
$$

where
with
$\frac{\lambda_{\text {sHic }}}{\lambda_{\text {SSL }}}$ from Chart 861 for $H_{i c}, V_{i c}=$ STATIC

$$
\frac{\lambda_{t}}{\lambda_{t H_{i c}}}=\frac{\lambda_{\mathrm{s}}}{\lambda_{\mathrm{s}} \mathrm{H}_{\mathrm{ic}}} \text { from Chart } 8.62 \text { for } \mathrm{H}_{\mathrm{ic}}, \mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)
$$

$$
\frac{\lambda_{\mathrm{tH}_{\mathrm{l}}}}{\lambda_{\mathrm{tSL}}} \text { from Chart 8. Є1 for } H_{i c}, V_{i c}
$$

$$
F_{1}\left(H_{i c}, V_{j c}\right) \text { from Chart } 8.63 \text { for } H_{i c}, V_{i c}
$$

Then the indicated airspeed corrected for instrument and lagerro: is

$$
v_{i c l}=v_{i c}+\Delta v_{i c l}
$$

$\mathrm{dV}_{\mathrm{ic}} / \mathrm{dt}=$ indicated acceleration corrected for instrument
error. knots/second
$\mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}=$ indicated rate-of - climb corrected for instrument
error, feet/minute
$\lambda_{G S L}=$ sea level static pressure lag constant, from
previous calibration, seconds
$\lambda_{t S L}=$ sea level total pressure lag constant, from
previous calibration, secords

$$
\begin{align*}
& \lambda_{s}=\lambda_{s S L} \frac{\lambda_{s} H_{i c}}{\lambda_{s} S L} \frac{\lambda_{\mathrm{g}}}{\lambda_{6} H_{i c}} \\
& \lambda_{\mathrm{t}}=\lambda_{\mathrm{tSI}}, \frac{\lambda_{\mathrm{t} H_{i c}}}{\lambda_{\mathrm{tSL}}} \cdot \frac{\lambda_{\mathrm{t}}}{\lambda_{\mathrm{tH}}}
\end{align*}
$$

Data reduction outline 7.1 is included in Scction 7 as a guide in performing this calculation. A numerical example is given with Chart 8.6.

4.3 DETERMINATION OF THE LAG CONS'TAN'T

With the aid of equation 4.2 it is possible to compute theoretically the lag constants for an aircraft pitot-static system. The lag constants uset for flight corrections, however, should not be computed, but should be determined experimentally, either in flight or in the laboratory. The computed lag constant is useful only as a rough check of the approximate magnitude of the lagerror that may be expected under certain flight conditions.

4.3.1 Laboratory Calibration:

The lag constant (λ) has been defined in a previous section as

$$
\lambda=\frac{P \cdot P_{i}}{d P / d t}
$$

where

$$
\begin{aligned}
& P=\text { the applied pressure at time } t \\
& P_{i}=\text { the indicated pressure at time } t
\end{aligned}
$$

This equation suggests the use of a laboratory procedure to determine λ in which a steady rate of change of pressure is applied to the aircraft pitot-static system with P, P_{i} and $d P / d t$ all determined as a function of time.
4.3.1.1 The Static Pressure Lag Constant

The static pressure lag constant can be determined by the use of an experimental apparatus similar to that shown in Figure 4.1

Schematic of Equipment for Determination of Altimeter Lag Constant

The static prossure vent on the probe in sealed in a close fitting enclosure. An altimoter frpreseure gage) is mounted on a photo-panel as close as posible to the enclosure. Another altimeter (or pressure gage) is connected to the static preseure system. Timing counture operating at a one-per-second rate from an intervalometer are installed as shown in the figure. Tho pressure in the enclosure is lowered to the
limit of the adjacent altimeter by means of a vacuum fump. The cameras and intervalometer are started and the needle valve is opened gradually to maintaln a $\mathrm{dh} / \mathrm{dt}$ of about 5000 feet per minute.

If pressure gages are used, the data from the two camera fllms is most conveniently plotted in accordance with equation 4.16 as ahown in Figure 4.2.

$$
\lambda_{B}=\frac{P_{\mathbf{B}}-P_{\theta}}{d P_{\theta \ell} / d t}
$$

Here, $P_{8} \ell$ is the pressure in the enclosure and P_{s} is the pressure indicated by the aircraft static pressure oystem. At a given F_{s}, λ_{s} is equal to the time increment between P_{8} and $P_{8} \ell$.

Figure 4.2
Plot Used to Determine Altimeter Lag Constant, λ_{B}

If altimeters are used rather than pressure gages, it is convenient to plot the data in accordance with equation 4.19 (ace Figure 4.3).

$$
\lambda_{s}=\frac{H_{i c l}-H_{i c}}{\mathrm{dH}_{i c} / \mathrm{dt}}
$$

Again, the lag constant for a given $H_{i c}$ is given by the interval between the two lines representing the indicated and actual simulated altitudes.

Figure 4.3
Plot Used to Determine Altimeter Lag Constant, λ_{s}

The value for λ_{a} obtained at any altitude, ts the lag constant for the atatic pressure corresponding to that alttiude and the temperature of the room in which the test was conducted. The sea level atatic pressure lag constant ($\lambda_{\mathrm{B}_{\mathrm{SL}}}$) can be determined from the rolation

$$
\lambda_{\mathbf{a}_{S L}}=\lambda_{\mathrm{s}} \frac{\mathrm{~T}_{\mathrm{aSL}}}{T_{\mathrm{a}}} \frac{P_{\mathrm{a}}}{P_{a_{S L}}}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{\mathbf{a}}=\text { room temperature } \\
& \mathrm{P}_{\mathbf{s}}=\text { pressure in the enclosure }
\end{aligned}
$$

This equation is applied to a number of pressures of Figure 4.2 or altitudes of Figure 4.3. From this information, a final value for $\lambda_{s S L}$. is selected. In general, the values obtained for high altitudes will be the most reliable, as λ_{s}, the quantity with the most uncertainty, is larger. A sample format for the determination of $\lambda_{s S L}$ is included as data reduction outline 7.2 .

4.3.1.2 The Total Pressure Lag Constant

The total pressure lag constant can be determined hy the use of a somewhat modified apparatus. In this case, a pressure is applied to the total pressure source and the static pressure source is left open to pick up atmospheric pressure. Either pressure gages or airspeed indicators may be used. (lf arrspeed indicators are used the pressure applied to the total pressure source should not exceed ambient pressure by an amount greater than the $q_{c i c}$ corresponding to the maximum $V_{i c}$ for which the airspeed indicator was designed.) The applied pressure is bled off slowly to give the change in pressure (or airspeed) as a function of time.

If pressure gages are used, the data may be plotted in accordance with the definition of the total pressure lag constant $\left(\lambda_{t}\right)$. From equation 4.9

$$
\lambda_{t}=\frac{P_{t} l}{} \mathrm{P}_{\mathrm{t} \ell^{\prime} / \mathrm{dt}}-P_{t^{\prime}}
$$

where $P_{t}^{\prime \prime}$ is the pressure in the enclosure and P_{t}^{\prime} is the pressure indicated by the aircraft total pressure system. Such a plot is shown in Figure 4.4.

Figure 4.4
Plot Used to Determine Total Presoure Lag Conetant, λ_{t}

Hero, as before, the total pressure lag constant at a given P_{t}^{\prime} is equal to the time increment between P_{t}^{\prime} and $P_{t}{ }^{\prime} \ell$.

It is usually more convenient to use airspeed indicators. With the applied static preseure held constant, $d H_{i c} / d t=0$; therefore, from equations (4.34, 4.35)

$$
\lambda_{t}=\frac{\Delta V_{i c \ell}}{d V_{i c} / d t}=\frac{V_{i c \ell}-V_{i c}}{d V_{i c} / d t}
$$

Henco, tho data can be plotted as in Figure 4.5. Then, the total prossure lag constant at a given $V_{i=}$ is equal to the ime increment between $V_{i c}$ and $V_{i c \rho}$.

Figure 4.5
Plot Used to Determine Total Presaure
Lag Constant, λ_{t}

The value for λ_{t} obtained at any airspeed is the lag constant for the total pressure corresponding to that airspeed and the temperature of the room in which the test was conducted. The sea level total pressure lag constant is then obtained from the relation

$$
\begin{align*}
\lambda_{t S L} & =\lambda_{t} \frac{T_{a_{S L}}}{T_{a}} \frac{P_{t}^{\prime}}{P_{a_{S L}}} \\
& =\lambda_{t} \frac{T_{a_{S L}}}{T_{a}} \frac{\left(q_{c i c}+P_{s}\right)}{P_{a S L}}
\end{align*}
$$

where $q_{\text {cic }}=f\left(V_{i c}\right)$ and is given in Table 9.6. A sample format for the determination of the sea level lag constant is included as data reduction outline 7.3 .
4.3.2 In-Flight Calibration:

Little experience has bcen obtained with in-flight methods for determining lag constants. However, sirce ground calibrations must be extrapolated to altitude where lay, constants are much greater,
in-flight calibrations do have an obvious advantage in that they can be determined more accurately provided suitable measurements can be made. Special equipment which is not generally available is necessary, however. Using in-flight methods, tapeline altitude is measured while the aircraft is changing flight conditions rapidly, as during a maximum power climb. (These measurements are perhaps best made with Askania cameras.) Tapeline altitudes are then converted to pressure altitudes by means of radiosonde data. A special installation must be made in the aircraft to provide correlation of altitudes recorded on the ground to those recorded in the aircraft.

4.3.2.1 The Static Pressure Lag Constant

The static pressure lag constant can be determined in flight as the aircraft climbs or dives. The indicated altitude $\left(\mathrm{H}_{\mathrm{i}}\right)$ is compared to the pressure altitude (H_{C}) where

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}=\mathrm{H}_{\mathrm{i}}+\Delta \mathrm{H}_{\mathrm{ic}}+\Delta \mathrm{H}_{\mathrm{ic}} \ell+\Delta \mathrm{H}_{\mathrm{pc}} \tag{4. 50}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta H_{i c}= & \text { altimeter instrument error correction corresponding } \\
& \text { to } H_{i} \\
\Delta H_{i c}= & \text { altimeter lag error correction corresponding } \\
& \text { to } H_{i c} \\
\Delta H_{p C}= & \text { altimeter position error correction corresponding } \\
& \text { to } H_{i c l}
\end{aligned}
$$

The altimeter lag error correction is determined as

$$
\Delta H_{i c l}=H_{c}-H_{i c}-\Delta H_{p c}
$$

With $\Delta H_{i c l}$ known, the static pressure lag constant can be determined from

$$
\lambda_{\mathrm{s}}=\frac{\Delta \mathrm{H}_{\mathrm{icl}}}{\mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}}
$$

$\mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}$ can be determined from a time history of the test aircraft altimeter. The rate -of-climb indicator can be used but it may introduce considerable error as it is subject to lagerror. The
pressure altitude at which the test aircraft is operating (H_{c}) can be determined either by the use of a pacer aircraft or by radar tracking. These methods are discussed in Section 5.6. The altimeter position error correction ($\Delta H_{p c}$) must be known from a previous calibration.

The use of this method is limited by the accuracy with which $\Delta H_{i c l}$ can be determined. This requires that the position error correction and the pressure altitude must be known with considerable accuracy, for it is quite possible that the error due to pressure lag can be completely hidden by errors in these quantities. Therefore, lag constants determined by this method should not be accepted without some reservation.

4.3.2.2 The Total Pressure Lag Constant

Inflight methods for determining the total pressure lag constant are not present'y used due to difficulty encountered in the measurement of the calibrated airspeed with sufficient accuracy. The airspeed indicator lag error correction has been expressed as

$$
\Delta V_{i c l}=\lambda_{t} \frac{d V_{i c}}{d t}+\left(\lambda_{s}-\lambda_{t}\right) \frac{d H_{i c}}{d t} \times F_{1}\left(H_{i c}, V_{i c}\right)
$$

Several flight procedures are theoretically possible by which λ_{t} can be determined
(1) Level acceleration $\left(\mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}=0\right.$)

$$
\lambda_{t}=\frac{\Delta V_{i c}}{d V_{i c}} / d t
$$

(2) Climb or dive at constant $V_{i c}\left(d V_{i c} / d t=0\right)$

$$
\lambda_{t}=\lambda_{s}-\frac{\Delta V_{i c} \ell}{d H_{i c} / d t \times F_{1}\left(H_{i c}, V_{i c}\right)}
$$

(3) Climb or dive at a constant acceleration or deceleration

$$
\lambda_{t}=\frac{\Delta V_{i c l}-\lambda_{s} \frac{d H_{i c}}{d t} \times F_{1}\left(H_{i c}, V_{i c}\right)}{\frac{d V_{i c}}{d t}-\frac{d H_{i c}}{d t} \quad F_{l}\left(H_{i c}, V_{i c}\right)}
$$

In all of these procedures, it is necessary to determine $\Delta V_{i c \mathcal{L}}$ where

$$
\Delta V_{i c l}=V_{c}-V_{i c}-\Delta V_{p c}
$$

$$
4.55
$$

Tracking methods are not reliable to give velocities accurately and the pacers are not calibrated for lag; therefore, it is not possible to obtain V_{c} with sufficient accuracy to give a reliable $\Delta V_{i c l}$ and henee λ_{t}.

SECTION 5

POSITION ERROR - THEORY AND CALIBRATION

In addition to instrument error and pressure lag error, the altimeter and airspeed indicator ar subject to another error called position error. Once corrections for instrument and pressure lag error have been made, position error may be accounted for and suitable corrections made. Under steady level flight conditions there is no lagerror, in which case position error corrections can be made directly following the instrument error correction.

5.1 ORIGIN OF POSITION ERROK

Determination of the pressure altitude and airspeed at which an aircraft is operating is dependent on the measurement of free stream impact pressure and free stream static pressure by the aircraft pitotstatic system as evidenced by equations (2.1, 2.2) and (2.10, 2.11). Generally, the pressures registered by the pitot-static system differ from free stream pressures as a result of:
(d) The existence of other than free stream pressures at the pressure source.
(2) Error in the local pressure at the source caused by the pressure sensors.
The resulting error is called position error. In the general case, position error may result from error at both the static and total pressure sources, For most flight test work it may be presumed that all of the position error originates at the static pressure source. The possibility of a total pressure error must; however, always be considered.

5.1.1 Total Pressure Error:

As an aircraft moves through the air, a static pressure dieturbance is generated in the air producing a static pressure field around the aircraft. At subsonic speeds, the flow perturbations due to the aircraft static pressure field are very nearly isentropic in nature and hence do not affect the total pressure. Therefore, as long as the total pressure source is not located behind a propeller, in the
wing wake, in a boundary layer, or in a region of localized supersonic flow, the total pressure error due to the position of the total pressure head in the aircraft pressure fie!d will usually be negligible. Normally, it is possible to locate the total pressure pickup properly and thus avoid any difficulty. This is most desirable as such things as localized supersonic flow regions produce rather erratic readings.

An aircraft capable of supersonic speeds should be supplied with a nose boom pitot-static system so that the total pressure pickup will be located ahead oi any shock waves formed by the aircraft. This condition is easential for it is difficult to correct for total pressure errors which result when oblique shock waves exist ahead of the pickup. The shock wave due to the pickup itself is considered in the calibration equation (2.10, 2.11) discussed in Section 2. 2.

Failure of the total pressure sensor to register the local pressure may result from the shape of the pitot-static head, inclination to flow, or a combination of both. Pitot-static tubes have been desi gred in many varied shapes. These tubes are tested in wind tunnels beture installation to assure good design. Some are suitable only for relatively low speeds while others are designed to operate in supersonic fiight as well. Therefore, if a proper design is selected and the pitot lips are not burred or dirty, there should be no error in total pressure due to the shape of the probe. Errors in total pressure caused by the angle of incidence of a probe to the relative wind are negligible for most flight conditicns. Commonly used probes produce no significant errors at angles of attack or sideslip up to approximately 20 degrees. This range of incensitivity can be increased by using either a shielded or a swivel head probe.

5.1.2 Static Pressure Error:

The static pressure field surrounding an aircraft in flight is a function of speed and altitude as well as the secondary parameters, angle of attack, Mach number, and Reynolds number. Hence, it is seldom
possible to find a losation for the static pressure source where the free stream pressure will be sensed under all flight conditions. Therefore, an error in the measurement of the static pressure due to the position of the static pressure orifice in the aircraft pressure field will gene rally exist.

At subsonic speeds, it is often possible to find some position on the aircraft fuselage where the static pressure error is small under all flight conditions. Therefore, aircraft limited to subsonic flight are best instrumented by the use of a flush static pressure port in such a poaition. The problem of the selection of an optimum static pressure orifice location is discussed in NACA Report 919, "Accuracy of Airspeed Measurements and Flight Calibration Procedures".

Aircraft capable of supersonic flight should be provided with a nose boom installation to minimize the possibility of total pressure error. This position is also advantageous for the measurement of atatic pressure as the effects of the aircraft pressure field will not be felt ahead of the dircraft bow wave. Therefore, at supersonic speeds when the bow wave is located downstream of the static pressure orifices, there will be no error due to the aircraft pressure field (See Figure 5.1).

Figure 5.1
Bow Wave of Supersonic Aircraft That Has Passed Behind Static Pressure Ports

Any error which will exist is a reault of the probe itself. Hence, the calibration at supersonic speeds may be derived from wind tunnel tents on the probe, or flight testa of the probe on another aircraft. Acsuming the head reglaters the local static pressure without error, any error which exists in a reault of interference from shoulder on the boom installation, or of influence on the static pressure from the shock wave in front of the boom, Avallable evidence suggests that free stream static pressure will exist if the static ports are located more than $8-10$ tube diameters behind the nose of the pitot-static tube and 4-6 diameters in front of the shoulder. (See Figure 5. 2).

In addition to the static pressure error introduced by the position of the static pressure orifices in the pressure ficld of the aircraft, there may be error in the registration of the local static pressure due primarily to inclination of flow. Erro: we to sideslip 18 often minimized in the case of flush static ports by the location of holes on opposite sides of the fuselage manifolded together. In the case of boom instailations, circumferential location of the static pressure porta will reduce the adverse effect of sideslip and angle of attack. The use of a swivel head also reduces this form of error.

5.2 DEFINITION OF POSITION ERROR

From the previous discussion it is seen that position errox is created at the static pressure source by the pressure field around the aircraft. It should be borne in mind that position error in the total source may exist, resulting, for instance, from imperfections in the pitot tube. Sufftcient airspeed calibrations should always be made on test afrcraft to determine the possible existance of position error in the total pressure. Since in nearly all installations this dees not occur
the following derivations consider pressure error in the static source only.

The relation of static pressure at any point within the pressure field of an aircraft to the free stream static pressure depends on Mach number (M), angle of attack (α), sideslip angle (β), Reynolds number (N_{R}) and Prandtl number ($\mathrm{N}_{\mathrm{P}}^{\mathrm{r}}$).

$$
P_{s} P_{a}=f_{1}\left(M, \alpha, \beta, N_{R}, N_{P_{r}}\right)
$$

(The symbol fenotes a functional relationship which is usually different each time it appears). Defining the position error, ΔP_{p}, as

$$
\Delta P_{p}=P_{s}-P_{a}
$$

equation 5.1 can be written as

$$
\frac{\Delta P_{p}}{P_{a}}=f_{2}\left(M, \alpha, \beta, N_{R}, N_{P_{r}}\right)
$$

Sidestip angles can be kept small; NP_{r} is approximately constant; and N_{R} effects are negligible as long as the static pressure source is not located in a thick boundary layer. Hence, equation 5.3 can be simplified to

$$
\frac{\Delta P_{p_{-}}}{P_{\alpha}}=f_{3}(M, \alpha)
$$

With no loss in generality, this equation can be changed to read:

$$
\frac{\Delta P_{p}}{q_{c i c}}=f_{4}\left(M_{i c}, C_{L i c}\right)
$$

with

$$
\begin{array}{ll}
M_{i c}=f_{S}\left(\frac{q_{c i c}}{P_{s}}\right) & 2.26,2.27 \\
G_{L i c}=\frac{n W}{\gamma P_{s} M_{i c}{ }^{2} S / 2}=\frac{n W}{\delta_{i c}} \frac{1}{M_{i c}} 2 \frac{2}{\gamma S P_{a S L}} & 5.6
\end{array}
$$

where

$$
\begin{aligned}
& q_{c i c}=\text { indicated differential pressure, } P_{t^{\prime}}-P_{s} \\
& n \\
& W=\text { load factor } \\
& W=\text { airplane gross weight }
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=\text { ratio of specific heats, } 1.4 \text { for air } \\
& S=\text { wing area. constant for a given airplane } \\
& \delta_{i c}=\text { pressure ratio corresponding to } H_{i c}, P_{B} / P_{a S L}
\end{aligned}
$$

The term $\Delta P_{p} / q_{c i c}$ is termed the position error pressure coefficient, and is very useful in the reduction of position error data From the definition of $C_{\text {Lic }}$

$$
\frac{\Delta P_{p}}{q_{c i c}}=f_{6}\left(\frac{n W}{\delta_{i c}}, M_{i c}\right)
$$

Frequently weight and load factor effects may be neglected when presenting position error data; however, for aircraft carrying large fuel loads and whose weight accordingly may change markedly during the course of a flight or for aircraft in windup turns, the "nW" effects should be takeri into account.

Consequently, when the relationship between the variables in equation 5.7 has been determined by means of a calibration, the following chart can be prepared for all weights and all load factors for the given aircraft in a given configuration.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{array}
$$

Figure 5.3
Non-Dimensional Plot of Position Error Data to Include Weight and Load Factor Variation

5.3 RELATIONSHIP BETWEEN VARIOUS FORMS OF THE POSITION ERROR

The atatic pressure position error (ΔP_{p}) causes error in the altimeter and airspeed indicator readings and in the Mach number calculated from these quantities. The resulting errors are designated $\Delta H_{P^{\prime}} \Delta V_{p}$ and ΔM_{p} respectively:

$$
\Delta H_{p}=H_{i c}-H_{c}
$$

where
$H_{c}=$ pressure altitude
$H_{i c}=\begin{aligned} & \text { indicated pressure altitude corrected for instrument } \\ & \text { error }\end{aligned}$
$\Delta V_{p}=V_{i c}-V_{c}$
where
$V_{c}=$ calibrated airspeed
$V_{i c}=$ indicated airspeed corrected for instrument error

$$
\Delta M_{p}=M_{i c}-M
$$

where

$$
\begin{aligned}
M= & \text { Mach number } \\
M_{i c}= & \text { indicated Mach number corrected for instrument } \\
& \text { error }
\end{aligned}
$$

(In these definitions it is assumed that there is no lagerror.) In general, it is more convenient to work with position error corrections rather than with the error itself, or

$$
\begin{array}{ll}
\Delta H_{p c}=H_{c}-H_{i c}=-\Delta H_{p} & 5.11 \\
\Delta V_{p c}=V_{c}-V_{i c}=-\Delta V_{p} \\
\Delta M_{p c}=M-M_{i c}=-\Delta M_{p} & 5.12
\end{array}
$$

It can be seen that the corrections are added to the indicated quantities to obtain the actual quantities.

When the position error is produced entirely by pressure coefficient variatiou at the static source, it is possible to relate altimeter position error direftiy to airspeed and machmeter position errors (since in most installations the altimeter and arspeed indicator utilize the same static source). It is possible to develop equations relating $\Delta P_{p}, \Delta H_{p c}$, $\Delta V_{p c}, \Delta M_{p c}$, and $\Delta P_{p} / q_{c i c}$. This is the subject of the following section.
$5.3 .1 \Delta P_{p}$ and $\Delta H_{p c}$:
The differential pressure equation for the altimeter can be
written as

$$
\begin{array}{ll}
d P_{s} & =-G_{\rho_{s}} d H_{1 c} \\
\frac{d P_{s}}{d H_{i c}}=-00010813 \sigma_{s} & 5.14
\end{array}
$$

where

$$
\begin{aligned}
& \mathrm{dP}_{\mathrm{s}}=\text { differential static pressure, }{ }^{\prime \mathrm{Hg}} \\
& \mathrm{dH}_{\mathrm{ic}}=\frac{\text { differential indicated pressure altitude corrected }}{} \\
& \text { forinstrument error, feet } \\
& \rho_{\mathrm{s}} \quad=\text { standard day air density at } \mathrm{H}_{\mathrm{ic}}, \text { slugs/feet }{ }^{3}
\end{aligned}
$$

$$
\begin{aligned}
& G \quad=\text { gravitational constant, } 32.17405 \mathrm{feet} / \mathrm{second}{ }^{2} \\
& \sigma_{\mathrm{s}} \quad=\text { standard day air density ratio at } \mathrm{H}_{\mathrm{ic}}, \rho_{\mathrm{s}} / \rho_{\mathrm{SL}}
\end{aligned}
$$

In the case of small errors, these differential quantities may be treated as finite differences. In this case,

$$
\begin{array}{ll}
d P_{s}=P_{s}-P_{a}=\Delta P_{p}{ }^{\prime}{ }^{\prime H} \mathrm{Hg} & 5.16 \\
d H_{i c}=H_{i c}-H_{c}=\Delta H_{p}=-\Delta H_{p c} & 5.17
\end{array}
$$

With this approximation

$$
\frac{\Delta P_{p}}{\Delta H_{p c}}=0.0010813 a_{s}, \frac{" \mathrm{Hg}}{\text { feet }}
$$

where σ_{c} is the standard day air density ratio at H_{ic}. Then

$$
\Delta \mathbf{P}_{\mathrm{p}}=\left(\frac{\Delta \mathrm{P}_{\mathrm{p}}}{\Delta \mathrm{H}_{\mathrm{p}}}\right) \quad \Delta \mathrm{H}_{\mathrm{pc}}
$$

This approximation is good for small errors, say $\Delta H_{p c}<1000$ feet, but cannot be used for large errors without introducing some error.

The exact relationship between ΔP_{p} and $\Delta H_{p c}$ can be obtained by insertion of $\psi_{s}=f(H)$, equation $1.10,1.13$ into the aitimeter equation 1.6 and integrating.

$$
\int_{1}^{2} d P_{a}=P_{2} \cdot P_{1}=-0.0010813 \int_{1}^{2} \sigma d H
$$

where 1 represents the actual quantity and 2 represents the indicated quantity. With this nomenclature

$$
P_{2}-P_{1}=P_{s}-P_{a}=\Delta P_{P}
$$

Hence

$$
\Delta P_{p}=-0.0010813 \int_{H_{c}}^{\mathrm{H}_{\mathrm{ic}}} \sigma \mathrm{dH}
$$

where

$$
\sigma=\left(1-6.87535 \times 10^{-6} \mathrm{H}\right)^{4.2561}
$$

for $H \leq 36,089$ feet, and

$$
\sigma=0.29707 \mathbf{e}^{-4.80634 \times 10^{-5}(\mathrm{H}-36,089.24)}
$$

for $H \geq 36,089$ feet. Performing this integration and expanding in terms of $\Delta H_{p c}$ by use of the Binomial theorem, an infinite series is obtained. Fortunately, only the first two terms are significant. With this simplification, the result can be expressed as

$$
\frac{\Delta P_{p}}{\Delta H_{p c}}=0.0010813 \sigma_{s}, \frac{\prime \mathrm{Hg}}{f e \mathrm{f}}
$$

where σ_{s} is measured at $\left(H_{i c}+\frac{\Delta H_{p c}}{2}\right)$.

$$
\sigma_{s}=1-6.87535 \times 10^{-6}\left(H_{i c}+\frac{\Delta H_{p c}}{2}\right)^{4.2561}
$$

for $\left(H_{i c}+\frac{\Delta H_{p e}}{2}\right) \leq 30089$ feet: and

$$
\sigma_{s}=0.29707 \mathrm{e}^{-4.80634 \times 10^{-5}}\left[\left(\mathrm{H}_{\mathrm{ic}}+\frac{\Delta H_{\mathrm{pc}}}{2}\right)-36,089.24\right]
$$

for $\left(H_{i c}+\frac{\Delta H_{P C}}{2}\right) \geqslant 36,089$ feet. Equation 5.23 is plotted in several forms:

$$
\begin{array}{ll}
\frac{\Delta P_{p}}{\Delta H_{p c}} \text { versus } H_{i c} \text { for } \Delta H_{p c} & 8.7 \\
\frac{\Delta P_{p}}{\Delta H_{p c}} \text { versus } H_{i c} \text { for } \Delta P_{p} & 8.8 \\
\Delta H_{p c} \text { versus } \Delta P_{p} \text { for } H_{i c} & 8.13
\end{array}
$$

Another way to determine ΔP_{p} from $\Delta H_{p c}$ is to find the values for P_{s} and P_{a} in the Standard Atmosphere, Table 9.2 or 9.3, corresponding to H_{ic} and H_{C} and subtract.
Example:
Given: $H_{i c}=17,140$ feet $\quad \Delta H_{p c}=550$ feet
Required: ΔP_{p} in ${ }^{\prime \prime} \mathrm{Hg}$
Solution:

$$
H_{c}=H_{i c}+\Delta H_{p c}=17,690 \mathrm{feet}
$$

From Table 9.3:

$$
\begin{gathered}
P_{s}=15.480 " H g ; \quad P_{a}=15.134{ }^{\prime \prime} \mathrm{Hg} \\
\Delta P_{p}=P_{s}-P_{a}=0.346 \cdot \mathrm{Hg}
\end{gathered}
$$

$5.3 .2 \Delta P_{p}$ and $\Delta V_{p c}$:

An approximate expression for the relationship between ΔP_{p} and $\Delta V_{p c} c a n$ be obtained by taking the first derivative of the standard airspeed indicator equation, and considering the derivative to be a finite difference. The resulting equation is good for small errors, say $\Delta V_{p c}<10$ knots The standard airspeed indicator equation is given in Section 2 as

$$
\frac{q_{c i c}}{P_{a S L}}=\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{3.5}-1
$$

for $\mathrm{V}_{\mathrm{ic}} \leq{ }^{\mathrm{a}} \mathrm{SL}_{\mathrm{S}}$, and

$$
{\frac{q_{c i c}}{P_{a S L}}}^{\left[7\left(\frac{v_{i c}}{a_{S L}}\right)^{2}-1\right]^{2.5}}
$$

for $\mathrm{V}_{\mathrm{ic}} \geq{ }^{\mathrm{a}} \mathrm{SL}$. The definition of qcic is

$$
q_{\mathrm{cic}}=P_{t^{\prime}}^{\prime}-P_{s}
$$

With no error a the total pressure, equation 5.26 can be differenizated to give

$$
d\left(q_{c i c}\right)=-d\left(P_{s}\right)
$$

Differentiating equation 2.12 and replacing $\mathrm{dq}_{\mathrm{c} i \mathrm{c}}$ by its equivalent, $-d P_{s}$, Lives the result:

$$
\frac{d P_{e}}{d V_{i c}}=-\frac{1.4 P_{a S L}}{a S L} \frac{V_{j c}}{a S L}\left[1+0.2\left(\frac{V_{i c}}{a S L}\right)^{2}\right]^{2.5} 5.28
$$

for $V_{i c} \leq{ }^{a} S_{L}$
where

$$
\begin{aligned}
& d P_{s}=\text { differential static pressure } \\
& d V_{i c}=\text { differential airspeed }
\end{aligned}
$$

Assuming the derivatives to be finite differences

$$
d P_{s}=P_{s}-P_{a}
$$

$$
d V_{i c}=V_{i c}-V_{c}=\Delta V_{p}=-\Delta V_{p c}
$$

With this approximation

$$
\frac{\Delta P_{p}}{\Delta V_{p c}}=\frac{1.4 P_{a S I}}{a_{S L}} \frac{V_{i c}}{a S L}\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{2.5}
$$

for $\mathrm{V}_{\mathrm{ic}} \leqslant$ asL. Similarly, for the case that $\mathrm{V}_{\mathrm{ic}} \geqslant \mathrm{a}_{\mathrm{SL}}$

$$
\frac{\Delta P_{p}}{\Delta V_{p c}}=52.854\left(\frac{V_{i c}}{a_{S L}}\right)^{6} \frac{\left[2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]}{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]}
$$

Then

$$
\Delta P_{p}=\left(\frac{\Delta P_{p}}{\Delta V_{p c}}\right) \Delta V_{p c}
$$

The exact expression relating ΔP_{p} and $\Delta V_{p c}$ is derived in the following manner for the case when no error in the total pressure source exists.

$$
q_{c i c}=P_{t}^{\prime}-P_{s}=f\left(V_{i c}\right)
$$

For the case of no position error

$$
q_{c}=P_{t}{ }^{\prime}-P_{a}=f\left(V_{c}\right)
$$

as $q_{c i c}=q_{c}$ and $V_{i c}=V_{c}$ with no position error. Now

$$
\Delta P_{p}=P_{s}-P_{a}=\left(P_{t}^{\prime}-P_{a}\right)-\left(P_{t}^{\prime}-P_{s}\right)=q_{c}-q_{c i c}
$$

Therefore,

$$
\Delta P_{p}=q_{c}-q_{c i c}=f\left(V_{c}\right)-f\left(V_{i c}\right)
$$

Since $V_{c}=V_{i c}+\Delta V_{p c}$, it is possible to expand the right hand side of this equation into a series for $\Delta V_{p c}$ by use of the Binomial Theorem. The resulting series may be discontinued after the second term with no loss in accuracy for $\Delta V_{p c} \leq 50$ knots. The resulting equation takes the form

$$
\begin{aligned}
\frac{\Delta P_{p}}{\Delta V_{P C}}= & \frac{1.4 P_{a S L}}{a_{S L}} \frac{V_{i \varepsilon}}{a_{S L}}\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{2.5} 5.35 \\
& +\frac{0.7 P_{a S L}}{a_{S L}}\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{1.5}\left[1+1.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right] \frac{\Delta V_{p C}}{a_{S L}}
\end{aligned}
$$

for $V_{i c} \leqslant a_{S L}$, and

$$
\begin{align*}
\frac{\Delta P_{p}}{\Delta V_{p c}}= & 52.854\left(\frac{V_{i c}}{a S L}\right)^{6} \frac{\left[2\left(\frac{V_{i c}}{a S L}\right)^{2}-1\right]}{\left[7\left(\frac{V_{i c}}{a S L}\right)^{2}-1\right]^{3.5}} \\
& +52.854\left(\frac{V_{i c}}{a S L}\right)^{5} \frac{\left[7\left(\frac{V_{i c}}{a S L}\right)^{4}-4.5\left(\frac{V_{i S}}{a S L}\right)^{2}+3\right]}{\left[7\left(\frac{V_{i c}}{a S L}\right)^{2}-1\right]^{4.5}} \frac{\Delta V_{p c}}{a S L}
\end{align*}
$$

for $\mathrm{V}_{\mathrm{ic}} \geq \mathrm{a}$ SL. Ncte that the first term is identical with that obtained by the approximate method. The second term may be considered as a correction to the first term that must be applied for large $\Delta V_{p c}$.

Equation (5.35, 5.36) has been plotted in several forms for the convenience of the reader

$$
\begin{array}{lll}
\frac{\Delta P_{p}}{\Delta V_{p c}} \text { versus } V_{i c} \text { for } \Delta V_{p c} & \text { Chart } & 8.9 \\
\frac{\Delta P_{p}}{\Delta V_{p c}} \text { versus } \gamma_{i c} \text { for } \Delta P_{p} & \text { Chart } & 8.10 \\
\Delta V_{p c} \text { versus } \Delta P_{p} \text { for } V_{i c} & \text { Chart } & 8.13
\end{array}
$$

The position error pressure coefficient is very uscicl as a parameter in high speed flight ($\mathrm{M}_{\mathrm{ic}}>0.6$). To facilitate oblaining $\Delta P_{p} / q_{c i c}$ from $\Delta V_{p c}$, a \mathcal{G} raph of $\Delta V_{p c}$ versus $V_{i c}$ ior $\Delta P_{p} / q_{c i c}$ is plotted as Chirt 8.11. This chart is determiried from the following considerations.

$$
\begin{equation*}
\frac{\Delta P_{p}}{q_{c i c}}=\frac{\left(\Delta P_{p} / P_{a S L}\right)}{\left(q_{c i c} / P_{a S L}\right)} \tag{5. 37}
\end{equation*}
$$

From equations (5.35, 5.36, 2.12,2.13, and 5.37)

$$
\begin{aligned}
& \text { for } \mathrm{V}_{\mathrm{ic}} \leq \mathrm{a}_{\mathrm{SL}} \text {, and }
\end{aligned}
$$

for $V_{i c} \geqslant \mathrm{a}_{\mathrm{SL}}$.

5.3.4 $\Delta H_{p c}$ and $\Delta V_{p c}$:

When working with small errors, say $\Delta H_{p c} 1000$ feet or $\Delta V_{p c}$ knots, the value of $\Delta H_{p c}$ can be determined from $\Delta V_{p c}$, or vice versa, by ti. following relation which is obtained by dividing the approximate equations (5.35 and 5.36) by 5.22 .

$$
\frac{\Delta H_{p c}}{\Delta V_{p c}}=\frac{58.536}{\sigma_{s}}\left(\frac{V_{i c}}{\text { aSL }}\right) \quad\left[1+0.2\left(\frac{V_{\text {ic }}}{\text { os }}\right)^{2}\right] \quad 2.5
$$

for $\dot{V}_{\mathrm{ic}} \leq \mathrm{a}_{\mathrm{SL}}$, and

$$
\frac{\Delta H_{p c}}{\Delta V_{p c}}=\frac{48,880}{\sigma_{s}}\left(\frac{V_{i c}}{o s L}\right)^{6} \frac{2\left(\frac{V_{i c}}{o s L}\right)^{2}-1}{\left[7\left(\frac{V_{i c}}{a S L}\right)^{2}-1\right]^{3.5}}
$$

for $V_{i c} \geq{ }^{\text {a }}$, , where σ_{s} is measured at $H_{i c}$. This equation has been plotted in Chart 8.12 as $\Delta H_{p c} / \Delta V_{p c}$ versus $V_{i c}$ for $H_{i c}$.

For the case of larger errors where equations 5.18 and 5.31, 5.32 ars not valid, the resulting equation $5.40,5.41$ and Chart 8.12 are of course not valid. In this case, one should use Chart 8.13 which is developed from the following relation which in turn is obtained by consideration of equations $5.35,5.36$ and 5.23.

$$
\begin{aligned}
\Delta \mathrm{P}_{\mathrm{p}}= & 0.0010813 \sigma_{\mathrm{s}} \Delta H_{\mathrm{pc}} \\
= & 1.4 \mathrm{P}_{\mathrm{aSL}} \frac{\mathrm{~V}_{\mathrm{ic}}}{\mathrm{a}_{\mathrm{SL}}}\left[1+0.2\left(\frac{\mathrm{~V}_{\mathrm{ic}}}{\mathrm{a}_{S L}}\right)^{2}\right]^{2.5} \frac{\Delta \mathrm{~V}_{\mathrm{pc}}}{\mathrm{a}_{\mathrm{SL}}} \\
& +0.7 \mathrm{P}_{\mathrm{aSL}}\left[1+0.2\left(\frac{\mathrm{~V}_{\mathrm{ic}}}{a_{S L}}\right)^{2}\right]^{1.5} \\
& {\left[1+1.2\left(\frac{V_{i c}}{\mathrm{aSL}}\right)^{2}\right]\left(\frac{\Delta \mathrm{V}_{\mathrm{pc}}}{a_{S L}}\right)^{2} }
\end{aligned}
$$

for $V_{i c} \leq a S L$, and

$$
\begin{aligned}
& =1168.45 \mathrm{P} a \mathrm{aSL}\left(\frac{V_{i C}}{a_{S L}}\right)^{6} \frac{\left[2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]}{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]^{3.5}} \frac{\Delta V_{\mathrm{pc}}}{a_{S L}} \\
& +1168.45 \mathrm{PaSL}^{\left(\frac{V_{i c}}{a_{S L}}\right)^{5}} \frac{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{4}-4.5\left(\frac{V_{i c}}{a_{S L}}\right)^{2}+3\right]}{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]^{4.5}} \frac{\Delta V_{p g}}{\left(\frac{V_{S L}}{}\right)^{2}}
\end{aligned}
$$

for $\mathrm{V}_{\mathrm{ic}} \geq \mathrm{a}_{\mathrm{SL}}$.
where o_{s} is measured at ($\left.H_{i c}+\frac{\Delta H_{p c}}{2}\right)$. Chart 8.13 is in ihe form of $\Delta V_{p c}$ versus ΔP_{p} for $V_{i c}$ and ΔP_{p} versus $\Delta H_{F c}$ for $H_{i c}$, or simply $\Delta V_{p c}$ versus $\Delta H_{p c}$ for $V_{i c}$ and $H_{i c}$.
$5.3 .5 \Delta M_{p c}$ and $\Delta H_{p c}$:
The Mach number equation may be written as

$$
\frac{P_{t}^{\prime}}{P_{s}}=\left(1+0.2 \mathrm{Mic}^{2}\right)^{3.5}
$$

for $M_{i c} \leq 1.00$. Differentiating, with P_{t} constant,

$$
\frac{d P_{s}}{d M_{i c}}=-\frac{1.4 P_{s} M_{i c}}{\left(1+0.2 M_{i c}^{2}\right)}
$$

Making the appioxieriations

$$
\begin{align*}
& \mathrm{d} P_{\mathrm{s}}=\vec{P}_{\mathrm{s}}-P_{\mathrm{a}}=\Delta P_{\mathrm{p}} \\
& \mathrm{~d} M_{\mathrm{ic}}=M_{\mathrm{ic}}-M=\Delta M_{p}=-\Delta M_{O C}
\end{align*}
$$

the relation between the static pressure erro: and the Mach number position correction is obtained.

$$
\frac{\Delta P_{p}}{\Delta M_{p c}}=\frac{1.4 P_{s} M_{i c}}{\left(1+0.2 M_{i c}{ }^{2}\right)}
$$

Tinis approximate equation is valid for small errors. The Mach number position correction can be related to the altimeter position correction by dividing equation 5.22 by equation 5.52 and introducing the perfect gas equation !. 3 .

$$
\frac{\Delta M_{p c}}{\Delta H_{p c}}=0.007438 \frac{\left(1+0.2 \mathrm{M}_{\mathrm{ic}}{ }^{2}\right)}{\mathrm{T}_{\mathrm{as}} \mathrm{M}_{\mathrm{ic}}}
$$

for $M_{i c} \leq 1.00$, where $T_{a s}$ is the standard day temperature corresponding to Hic .

In the supersonic case, $\mathrm{M}_{\mathrm{ic}} \geq 1.00$

$$
\frac{P_{i}^{\prime}}{P_{s}}=\frac{166.921 \mathrm{M}_{\mathrm{i}}{ }^{7}}{\left(7 \mathrm{M}_{\mathrm{ic}}{ }^{2}-: i^{2.5}\right.}
$$

Proceeding as in the subsonic case

$$
\frac{\Delta P_{f}}{\Delta M_{p c}}=\frac{7 P_{s}\left(2 M_{i c}{ }^{2}-1\right)}{M_{i c}\left(7 M_{i c}{ }^{2}-1\right)}
$$

and

$$
\frac{\Delta M_{p c}}{\Delta H_{p c}}=0.001488 \frac{M_{i c}\left(7 M_{i c}^{2}-1\right)}{T_{a s}\left(2 M_{i c}^{2}-1\right)}
$$

for $M_{i c} \geq 1.00$, where T as corresponds to $H_{i c}$.
Equation 5.49, 5.52 has been plotted in Chart 8.14 in the form:

$$
\Delta M_{p c} / \Delta H_{p c} \text { versus } M_{i c} \text { for } H_{i c}
$$

Chart

Chart 8.14 and the above equations on which it is based are valid only for small errors, say $\Delta M_{p c}<0.04$ or $\Delta H_{p c}<1000$ feet.

For larger errors, a better approximation is necessary. The exact result can be obtained from the following analysis. In general, for $M_{i c} \leq 1.00$.

$$
\frac{P_{t^{\prime}}}{P_{s}}=\left(1+0.2 M_{i c}^{2}\right)^{3.5}
$$

For the case of no position error,

$$
\frac{P_{\mathrm{L}}^{\prime}}{P_{\mathrm{a}}}=\left(1+0.2 \mathrm{M}^{2}\right)^{3.5}
$$

With

$$
\Delta P_{p}=P_{s}-P_{a}
$$

and

$$
\Delta M_{p c}=M-M_{i c}
$$

it is possible to express the exact relationship

$$
\frac{\Delta F_{p}}{P_{g}}=f\left(M_{i c}, \Delta M_{p c}\right)
$$

Expanding by the Binomial Theorem and retaining the first two terms yields the result

$$
\frac{\Delta P_{p}}{P_{s}} p=\frac{1.4 M_{i c} \Delta M_{p c}}{\left(1+\left(.2 M_{i c}{ }^{2}\right)\right.}+\frac{0.7\left(1-1.6 M_{j c}^{2}\right) \Delta M_{p C}{ }^{2}}{\left(1+0.2 M_{i c}{ }^{2}\right)^{2}}
$$

for $\mathrm{Mic}_{\mathrm{ic}} \leq 1.00$. Similarly for the supersonic case ($\mathrm{M}_{\mathrm{ic}} \geqslant 1.00$)

$$
\frac{\Delta P_{p}}{P_{s}}=\frac{7\left(2 M_{1 c}^{2}-1\right) \Delta M_{p c}}{M_{i c}\left(7 M_{i c}^{2}-1\right)}-\frac{7\left(21 M_{i c}{ }^{4}-23.5 M_{i c}^{2}+4\right) \Delta M_{p c}{ }^{2}}{M_{i c}^{2}\left(7 M_{i c}{ }^{2}-1\right)^{2}}
$$

The final result is obtained by dividing equation 5.27 by equations 5.60 , 5.61

$$
\begin{align*}
\frac{\Delta P_{p}}{\bar{P}_{s}} & =0.0010813 \frac{\sigma_{s}}{P_{s}} \Delta H_{p c} \\
& =\frac{1.4 \mathrm{Mic}_{\mathrm{ic}} \Delta \mathrm{M}_{p c}}{\left(1+0.2 \mathrm{M}_{\mathrm{ic}}{ }^{2}\right)}+\frac{0.7\left(1-1.6 \mathrm{M}_{\mathrm{ic}}{ }^{2}\right) \Delta \mathrm{M}_{p c}{ }^{2}}{\left(1+0.2 \mathrm{M}_{\mathrm{ic}}{ }^{2}\right)^{2}}
\end{align*}
$$

for $\mathrm{M}_{\mathrm{ic}} \leq 1.00$, and

$$
\begin{align*}
\frac{\Delta P_{p}}{P_{s}} & =0.0010813 \frac{\sigma_{s}}{P_{s}} \Delta H_{p c} \\
& =\frac{7\left(2 \mathrm{M}_{\mathrm{ic}}{ }^{2}-1\right)}{\mathrm{M}_{\mathrm{ic}}\left(7 \mathrm{M}_{\mathrm{ic}}{ }^{2}-1\right)} \Delta \mathrm{M}_{\mathrm{pc}}-\frac{7\left(21 \mathrm{Mic}^{4}-23.5 \mathrm{M}_{j c^{2}}+4\right) \Delta \mathrm{M}_{\mathrm{pc}}{ }^{2}}{\mathrm{Mic}^{2}\left(7 \mathrm{Mic}^{2}-1\right)^{2}}
\end{align*}
$$

for $M_{i c} \geq 1.00$, where P_{s} is measured at $H_{i c}$ and σ_{g} is measured at ($\mathrm{H}_{\mathrm{ic}}+\frac{\Delta H_{p c}}{2}$). This equation is plotted in Chart 8.15 in the form of $\Delta H_{p c}$ versus $\Delta P_{p} / P_{s}$ for $H_{i c}$, and $\Delta M_{p c}$ versus $\Delta P_{p} / P_{s}$ for $M_{i c}$, or sinaply $\Delta M_{p c}$ versus $\Delta H_{p c}$ for $M_{i c}$ and $H_{i c}$.
$5.3 .6 \Delta M_{p c}$ and $\Delta V_{p c}:$
For small errors, siy $\Delta \mathrm{M}_{\mathrm{pc}}<0.04$ or $\Delta \mathrm{V}_{\mathrm{pc}}<10$ knots, the ratio $\Delta M_{p c} / \Delta V_{p c}$ can be obtained by multiplying equations 5.49, 5.52, 5.40, 5. 41 with the result

$$
\frac{\Delta M_{P C}}{\Delta V_{P C}}=\frac{P_{a S L}}{a_{S L}} \frac{1}{F_{s}} \frac{V_{1 C}}{a_{S L}}\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{2.5} \frac{\left(1+0.2 M_{i c}{ }^{2}\right)}{M_{i c}}
$$

for $V_{i c} \leq a_{S L}, M_{i c} \leq 1.00$;

$$
\frac{\Delta M_{p c}}{\Delta V_{P C}}=\frac{P_{a S L}}{5 a S L} \frac{1}{P_{s}} \frac{V_{i c}}{a S L}\left[1+0.2\left(\frac{V_{i c}}{a S L}\right)^{2}\right]^{2.5} \frac{M_{i c}\left(7 M_{i c}^{2}-1\right)}{\left(2 M_{i c}^{2}-1\right)}
$$

for $\mathrm{V}_{\text {ic }} \leqslant$ aSL, $\mathrm{M}_{\mathrm{ic}} \geqslant 1.00$; and

$$
\frac{\Delta M_{p c}}{\Delta V_{p c}}=\frac{166.921 P_{a S L}}{a S L} \frac{1}{P_{5}} \frac{\left(\frac{V_{i c}}{a_{S L}}\right)^{6}\left[2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]}{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]^{3.5}} \frac{\mathrm{M}_{i c}\left(7 \mathrm{M}_{i c}^{2}-1\right)}{\left(2 \mathrm{M}_{i c}^{2}-1\right)}
$$

for $V_{i c} \geqslant a_{S L}, E q u a t i o n s(5.60,5.61,5.62)$ are plotted in Chart 8.16 in the form

$$
\frac{\Delta M_{p c}}{\Delta V_{p c}} \text { versus } M_{i c} \text { for } H_{i c}
$$

No chart has been prepared in which one can directly relate $\Delta M_{p c}$ to $\Delta V_{i, c}$ for the case of very large position error where Chart 8.16 is not $v i l i d$. In the case of large error, it is possible to determine $\Delta M_{p c}$ from $\Delta V_{p c}$, or vice versa, by the following indirect method:
(1) Given $\Delta V_{p c}$ and $V_{i c}$, detc:rmine $\Delta \dot{s}_{p} / q_{c i c}$ from Chart 8.11
(2) Determine $M_{i c}$ from $V_{i c}$ and $H_{i c}$ and Chart 8.5
(3) Determine $\Delta M_{p c}$ from $M_{i c}$ and $\Delta P_{p} / q_{c i c}$ and Chart 8.18

5.3.7 $\Delta M_{p c}$ and $\Delta P_{p} / q_{\text {cic: }}$

For smail errors, say $\Delta M_{p c}<0.04$, the ratio $\Delta M_{p c} /\left(\Delta p_{p} / q_{c i c}\right)$ may be formed by dividing equation (2.26, 2.27) by equation (5.48, 5.51) with the result

$$
\frac{\Delta M_{p c}}{\left(\Delta P_{p} / q_{c i c}\right)}=\frac{\left(1+0.2 M_{i c}{ }^{2}\right)}{1.4 M_{i c}}\left[\left(1+0.2 M_{i c}^{2}\right)^{3.5}-1\right] \quad 5.6 j
$$

for $\mathrm{Mic}_{\mathrm{ic}} \leqslant 1.00$ and

$$
\left(\frac{\Delta M_{i c}}{\left(\Delta F_{F} / q_{c i c}\right.}\right)=\frac{M_{i c}\left[166.921 \mathrm{M}_{\mathrm{ic}}{ }^{7}-\left(7 \mathrm{M}_{\mathrm{ic}}{ }^{2}-1\right)^{2.5}\right]}{7\left(7 \mathrm{M}_{\mathrm{ic}}{ }^{2}-1\right)^{1.5}\left(2 \mathrm{M}_{\mathrm{ic}}^{2}-1\right)}
$$

for $M_{i c} \geq 1.00$. This equation is plotted in Chart 8.17 in the form

$$
\frac{\Delta M_{p c}}{\left(\Delta P_{p} / q_{c i c}\right)} \quad \text { versus } M_{i c} \quad \text { Chart } 8.17
$$

The expression for large errors is obtained by dividing equations (5.56 and 5.57) by equations (2.26 and 2.27).

$$
\frac{\Delta P_{p}}{q_{\mathrm{cic}}}=\frac{\frac{1.4 \mathrm{M}_{\mathrm{ic}} \Delta \mathrm{M}_{\mathrm{pc}}}{\left(1+0.2 \mathrm{M}_{\mathrm{ic}}^{2}\right)}+\frac{0.7\left(1-1.6 \mathrm{M}_{\mathrm{ic}}{ }^{2}\right) \Delta \mathrm{M}_{\mathrm{pc}}{ }^{2}}{\left(1+0.2 \mathrm{Mic}^{2}\right)^{2}}}{\left[\left(1+0.2 \mathrm{M}_{\mathrm{ic}}{ }^{2}\right)^{3.5}-1\right]}
$$

for $M_{i c} \leq 1.00$, and

$$
\frac{\Delta p_{p}}{q_{c i c}}=\frac{\frac{7\left(2 M_{i c}{ }^{2}-1\right) \Delta M_{p c}}{M_{i c}\left(7 M_{i c}{ }^{2}-1\right)}-\frac{7\left(21 M_{i c}{ }^{4}-23.5 M_{i c}{ }^{2}+4\right) \Delta M_{p c}{ }^{2}}{M_{i c}{ }^{2}\left(7 M_{i c}^{2}-1\right)^{2}}}{\left[\frac{166.921 M_{i c}{ }^{7}}{\left(7 M_{i c}{ }^{2}-1\right)^{2.5}}-1\right]}
$$

for $M_{i c} \geq 1.00$. Equations (5.65 and 5.66) is plotted in Chart 8.18 in the form
$\frac{\Delta P_{p}}{q_{c i c}}$ versus $\Delta M_{p c}$ for $M_{i c}$
Chart 8.18

5.4 EXTRAPOLATION OF RESULTS

In general, the position error corrections must be established by a flight calibration made under all flight coriditions. In some cases, however, it is possible to extrapolate over a wide range of conditions from a calibration over the speed range at one altitude. It has been shown that

$$
\begin{array}{rlr}
\frac{\Delta P_{p}}{q_{c i c}} & =f_{d}\left(M_{i c}, C_{L i c}\right) & 5.5 \\
& =f_{2}\left(M_{i c}, \frac{n W}{\delta_{i c}}\right) & 5.6
\end{array}
$$

To derive this relation expezimentally for direct application to any fight condition would thus require calibrations at several weights and load factors over the full altitude and speed range of the aircraft. The appropriate assumptions on which predictions to other conditions can be madefrom tests at one altitude depend on the Mach number and are considered in this section for several ranges of that parameter.

5.4.1 Low Mach Nurnber Range ($M_{i c} \leq 0.6$):

For low Mach numbers, the effects of compressibility on pressure error may be considered negligible. Without introducing serious error, it may be said that the pressure coefficient is a function only of lift coefficient (C_{L}) as shown in Figure 5.4.

Figure 5.4
$\Delta P_{p} / q_{c i c}$ versus C_{L} for Typical Wing Tip Probe (Good for Low Speed Only)

This plot will represent the flow field a=ound the probe for all flight conditions in the low Mach number range.

The position error calibrations for a low speed aircraft are often presented in another manner.

$$
\frac{\Delta P}{q_{c i c}}=f_{3}\left(C_{L_{i c}}\right)
$$

Since $C_{L}=n W /\left(\rho_{\overline{S L}} V_{e}^{2} S / 2\right)$ and in the low Mach number range $v_{c} \cong V_{e}$, it can be assumed that

$$
c_{L}=\frac{n W}{\rho_{s L} V_{c} L_{S / 2}}
$$

or

$$
C_{L_{i c}}=\frac{n W}{\rho_{s L} V_{i c}^{2} s / 2}
$$

Substituting equation 5.69 in equation 5.67

$$
\frac{\Delta P_{p}}{q_{\text {cic }}}=f_{4}\left(\frac{n W}{V_{l c}{ }^{C}}\right)=f_{5}\left(\frac{n W}{V_{i c}}\right)
$$

It te possible to obtain a curve of $\Delta P_{p} / q_{c i c}$ versus $\sqrt{n W / V_{i c}}$ from the reaulte of a position error callbration over the \mathcal{C}_{L} range at one altitude. From this plot, the position error pressure coefficient at any relevant altitude, weight and normal acceleration can be obtained.

A typical plot of $\Delta P_{p} / q_{c i c}$ versus $V_{i c}$ showing $n W$ vartation and Mach number effects at the higher speeds is given in Figure 5.5. It may be seen from this figure that a chinge in $n W$ at low apeed can cause a substantial change in position error.

Figure 5.5
Plot of $\Delta P_{p} / q_{c i c}$ versue $V_{i c}$ for Low Speed Aircraft

The altimeter position error correction for low speed aircraft can be extrapolated from one altitude to another aititude at lise same indicated airspeed corrected for insirument error $\left(V_{i c}\right)$ as long as there are no appreciable changes in weight or load factor. It has been shown for low speed alrcraft in which there are no Mach effects that

$$
\frac{\Delta P_{p}}{q_{\mathrm{cic}}}=f\left(\mathrm{~V}_{\mathrm{ic}}\right) \text { only }
$$

for constant $n W$. Therefore, at a given $V_{i c}$, and hence $q_{c i c}$, and constant weight and load factor, the static pressure error $\left(\Delta P_{p}\right)$ is constant during altitude changes Hence for a given V_{ic} and constant nW

$$
\Delta H_{p c}=\Delta H_{p c} \frac{\left(\frac{\Delta \mathrm{P}_{\mathrm{p}}}{\Delta \mathrm{H}_{\mathrm{p}}}\right)}{\left(\frac{\Delta \mathrm{P}_{\mathrm{p}}}{\Delta \mathrm{H}_{\mathrm{pc}}}\right)}
$$

In the case of small errors, equation 5.22 yields the result,

$$
\Delta H_{p c 2}=\Delta H_{p c l}\left(\frac{\sigma, s 1}{\sigma}\right)
$$

where $v_{s l}$ is the density ratio at $H_{i c l}$, and $\sigma_{s} 2$ is the density ratio at $\mathrm{H}_{\mathrm{ic}} 2$. In that the position error in the low speed range is always small, the problem of large error does not need to be considered here. Eguation 5.77 states that the altimeter position error correction can be extrapolated to another altitude at the same $V_{i c}$ by mulliplication of $\Delta H_{p c}$ by the ratio of the standard day air densities. This procedure :s good only in the low speed range when there are no Mach numbereffects and when the variation in $n W$ is not of signific ance.
5.4.2 $\frac{\text { Medium Subsonic }}{\left(0.6<\mathrm{M}_{\mathrm{ic}}<1.0\right)}$ and Transonic Mach Number Kange

In this Mach number range, the position error pressure coefficient will in general depend on both $M_{i c}$ and $C_{L i c}$ so the
general equation must be consldered.

$$
\begin{align*}
\frac{\Delta P_{p}}{q_{c i c}} & =f_{1}\left(M_{i c}, C_{L_{i c}}\right) \\
& =f_{2}\left(M_{i c}, \frac{n W}{\delta_{i c}}\right)
\end{align*}
$$

Therefore, in the general case a position error calibration must be conducted at several altitude and weight combinations. In mary installations however, the effect of the $C_{L_{i c}}$ parameter is negligible in this Mach number range. In this case, a calibration at one altitude can be extrapolated to other altitudes. The existence of any $C_{L_{i c}}$ effect should be investigated by performing tests at two widely different altitudes and plotting curves of $\Delta P_{p} / q_{c i c}$ versus $M_{i c}$ for the values of $n W / \delta_{i c}$. The resuit for a typical nose boom installation is shown in Figure 5.6. This curve shows that $n W / \delta_{i c}$ effects exist in the system tested. This curve would be a single line if there were no $C_{L_{i c}}$ effects.

Position Error Pressure

Indicated Mach Number Corrected for Instrument Error, $M_{i c}$
Figure 5.6
Plot of $\Delta P_{p} / q_{c i c}$ versus $M_{i c}$ for a Typical Nose Boom Installation Showing $n W / q_{i c}$ Effecte at Low Speed End

When there are no appreciable $C_{\text {Lic }}$ effects as indicated by a single curve of $\Delta P_{p} / q_{c i c}\left(v e r s u s M_{i c}\right.$ for all $n W / \delta_{i c}$) the altimeter position error correction at one altitude can be extrapolated to any other altitude at the same $M_{i c}$. With no $C_{\text {Lic }}$ effect.

$$
\frac{\Delta P_{p}}{q c i c}=f\left(M_{i c}\right) \text { only }
$$

Equations $5.63,5.64$ and 5.65 state

$$
\Delta M_{p c}=f\left(M_{1 c}, \frac{\Delta P_{p}}{q_{c i c}}\right)
$$ 5.65

From these equations, it follcws that $\Delta M_{p c}$ is a function of $M_{i c}$ only and hence independent of altutude when there are no $C_{\text {Lic }}$ effects.

$$
\Delta M_{p c}=f\left(M_{1 c}\right) \text { only } \quad 5.75
$$

Therefore, one may write

$$
\Delta H_{p c 2}=\Delta H_{p c} \frac{\left(-\frac{\Delta \mathrm{M}_{\mathrm{pc}}}{\left.\Delta \mathrm{H}_{\mathrm{pc}}\right)}\right.}{\left(\frac{\Delta \mathrm{M}_{\mathrm{pS}}}{\Delta \mathrm{H}_{\mathrm{pc}}}\right.}
$$

for $M_{i c l}=M_{1 c 2}$. In the case of small errors, equation $5.49,5.52$ yields the result

$$
\Delta H_{p c 2}=\Delta H_{p c l}\left(\frac{T_{a s 2}}{T_{a s l}}\right)
$$

for $M_{i c 1}=M_{i c 2}$, where $T_{a s 1}$ and $T_{\text {as } 2}$ are the standard day air temperatures corresponding to H_{ic} and $\mathrm{H}_{\mathrm{ic}} 2$ respectively. In the case of large errors, it would appear that the above method of extrapolation would no longer be valid as equations (5.53 and 5.56) from Which it is derived are nolonger valid. Fortunately this is not the case and equation 5.81 can be used for very large errors; say $\Delta H_{p c}<$ 3000 feet, with no appreciable loss of accuracy.

5.4.3 Supersonic Mach Number Range ($\left(y_{i c}>1.0\right)$:
 An aircraft capable of superscnic thight should be equipped with

 a nose boom installation. In this case, the aircraft bow wave will pass behind the static pressure holes at a M_{ic} of 1.03 or so. At higherMach numbers, the effect of the lift coefficient on the position error pressure coefficient will be zero as the pressure field of the aircraft will not be felt in front of the bow wave. Therefore, any pressure error that does exist will be a function of Mach number only so that a plot of $\Delta P_{p} / q_{c i c}$ versus $M_{i c}$ will be valid for all altitudes. In the usual case, this error is quite small and may be zero.

5.5 CORRELATION OF RESULTS OF POSITION ERROR CALIBRATIONS

In the position error calibration methods discussed in the next section, data is usually obtained in the form of $\Delta H_{p c}$ or $\Delta V_{p c}$ for the altitude at which the test was conducted. In this section, methods by which data from different calibrations can best be correlated is given. The final report presentation is usually given as $\Delta H_{p c}$ and $\Delta V_{p c}$ versus $V_{i c}$ with H_{ic} as the parameter. This can be done for both light weight and heavy weight configurations if weight is an important parameter.

For low speeds in which there are no Mach number effects, the position error oblaned from several calibrations is best correlated by the use of a plot of $\Delta V_{p c}$ versus $V_{i c}$. Such a plot will be a single line which is good for all altitudes for a constant nW with the absence of $M_{i c}$ effects.

It has been shown that in the low Mach number range

$$
\frac{\Delta P_{p}}{q_{c i c}}=f_{1}\left(V_{i c}\right) \text { only }
$$

for constant nW. From Section 5.3.3

$$
\Delta V_{p c}=f_{2}\left(\frac{\Delta P_{p}}{q_{c i c}}, V_{i c}\right)
$$

Therefore, in the absence of Mach number effects

$$
\Delta V_{p c}=f_{3}\left(V_{i c}\right) \text { only }
$$

for constant $n W$
At higher speeds, when there is the possibility of both $M_{i c}$ and $C_{\text {Lic }}$ effects, the results of calibrations are best correlated by a plot of $\Delta P_{p} /$ qcic or $\Delta M_{p c}$ versus $M_{i c}$. It has been shown in the previous section that this will usually be a single line for $\mathrm{M}_{\mathrm{ic}}>0.6$ except for posaible low speed $n W / \delta_{i c}$ breakoffs.

5.6 CALIBRATION METHODS

The static pressure error can be determined by any method in which the indicated static pressure and the free stream static pressure are obtained at the same time. The indicated pressure is obtained by installing a sensitive aneroid such as an altimeter in the static pressure system to be calibrated. The free stream static pressure can be obtained directly from a measurement of the atmospheric pressure or indirectly from a measurement of airspeed, in which case the total pressure error must be known or assumed to be zero. The direct method is called an altimeter calibration. Some of the more common methods are: the tower fly-by, the pacer and aircraft $£ 1 y-b y$, the altılude pressure comparison methods, and the trailing bomb method. The indirect method is called an airspeed calibration. Airspeed calibrations can be obtained by the speed course method and the pacer and radar methods when airspeeds are compared. In general, the accuracy of the altimeter calibration is far superior to the airspeed calibration as the altimeter is a relatively accurate instrument compared to the alrspeed indicator concerning such things as hysteresis and repeatability it will be shown, however, that at very low speeds an airspeed calibration may be superior.

The choice of a method will, in general, depend on the instrumentation available, the degree of accuracy required, and the speed and altitude range fur which a calibration is desired. The most desirable method or combination of methods is one which requires a minimum of time, equipment and manpower to arrive at an accurate calibration over the entire speed and altitude range of the aircraft; it must be quick and inexpensive, yet reliable and complete. Several methods are discussed in this section with this in mind. Each methodis described in detail. Tinen the advantages and disadvantages of each are discusaed so that the reader may choose the method or combination of methods which best fulfills his need.
5.6.1 The Tower Fly-By Method(See Data Reduction Outline 7.5):

The tower fly-by is a low altitude method in which the altitude indicated by the aircraft pitot-static system is compared to the actual pressure altitude to determine the static pressure error. A theodolite is set up in a control tower or a tall building at a known distance from a line marked on a runway. The aircraft to be calibrated is flown at constant speed over this course as close to theodolite level as possible but at least one full wing span off the ground to be out of ground effect. As the aircraft passes the theodolite position, the pilot records altitude $\left(H_{i}\right)$ and airspeed $\left(V_{i}\right)$; the theodolite operator measures the vertical angle to the aircraft. The atmospheric pressure at the theodolite station is measured with an absolute pressure gage or altimeter, or static pressure and temperature are measured at the ground and reference level static pressure is computed on the basis of the standard temperature lapse rate. The true pressure altitude of the aircraft is determined by adding the physical difference in height between the theodolite and the alrcraft to the pressure altitude at theodolite level.

$$
\mathrm{H}_{\mathrm{c}}=\mathrm{H}_{\mathrm{c}} \text { at theodolite level }+\Delta \mathrm{h}
$$

where $\Delta \mathrm{h}$ is determined from the theodolate reading. This operation is valid, even during extreme atmospheric conditions, as the pressure gradient will not vary from standard enough to cause appreciable error in the small height difference between the aircraft and the theodolite. This method is illustrated in the following figure.

Pilot Records: Indicated Alrapeed, V_{1} Indicated Altitude, H_{L}

Theodolite Operator Recorde:
Pressure Altitude of Tower Vertical Angle to Aircraft, α

Figure 5.7
Tower Fly-by Method

The tower fly-by method is limsted to level filght apeede above stalling speed by a eafe margin. The upper speed limit may be set by local restrictione prohlbiting upersonic flight at or near ground level in a congested area.

The static pressure error can be determined with very good accuracy by the une of this method. At bw speeds, however, any error in the measurement of the static pressure error becomes very important when converted to alrapeed position error (ΔV_{p}) an evidenced by equation (5.35, 5.36). This effect is lilustrated in Figure 5.8.

Figure 5.8
Plot of ΔP_{p} vs $y_{i c}$ Determined from Tower
Fly-By Calibrations

At the Air Force Flight Test Center, with the use of conventional aircraft instrumentation and a "visual theodolite", this method is not ued for speeds below 200 knots or so for this reason.

The tower fly-by method is very quick, requiring only a few minutes per point for the flight and manual data reduction. It is relatively inexpensive as 1 hour of flight time will cover adequately the speed range of the aircraft and no extensive equipment is necessary.

In an improvement of this technique, two ground stations may be used, one on each side of the lined course. This allows the aircraft to deviate from the runway without introducing error.

Qne disadvantage of the tower fly-by method, as discussed above, Is the hazard of flying at high speed near the ground. This hazard can be eliminated by the lise of a modified system. In this method, a photograph is taken as the aircraft pasees over a camera which is directed vertically upward from a position on the marked course. The tapeline altitude of the alrcraft is then determined from the focal
length of the camera and the proportion of the size of the image on film to the true dimensions of the object. The static pressure at this altitude can be computed or determined by flying the test aircraft at a speed for which the pressure error is known. Good results have been obtained with the use of a conventional 35 mm camera up to altitudes of 1000 feet. This method is discussed in the report, "Position Error Determination by Stadiametric Ranging with a 35 mm Movie Camera," Technical Report No. 2-55, Test Pilot Training Division, U.S. Naval Air Test Center (Patuxent River, Maryland), June 24, 1955 by W.J. Hesse.
5.6.2 The Ground Speed Course Method (See Data Reduction Outline 7.6):
The ground speed course is an other low altitude method which is especially good at low speeds. It is best used in conjunction with the tower fly-by method to obtain a low altitude position error calibration over the entire speed range. This is an ''airspeed calibration' in that the error in airspeed is measured directly from which the static pressure error may be determined - providing the error in total pressure is known or can be assumed to be zero.

The aircraft to be calibrated is flown over a course of known length at a uniform speed and at constant altitude. True airspeed is obtaned from time and distance data. Calibrated airspeed, calculated from true airspeed, is compared to the airspeed indicated by the aircraft pitot-static system to obtain the error in airspeed due to static pressure error. The conversion of V_{t} to V_{c} requires that both pressure altitude and free air temperature be known. The pressure altitude can be obtained by adding the pressure altitude corresponding to the ground atmospheric pressure to the estimated height of the aircraft above the ground. Instead of estimating the height of the aircraft above the ground, an iterative process can be used where the instrument corrected altimeter reading is first used to find position error. This position error can then be used to correct the altimeter reading and the process repeated. Ambient temperature is
determlned from indicated readinga recorded in the aircraft. This method is described in Figure 5.9.

Pllot Records:
Indicated Airapeed, V_{i} Indtcated Temperature, ${ }_{i}$ Indicated Altitude, H_{1} Estimated Helght Time

Figure 5.9
Ground Speed Course Method
The aircraft should be flown on reciprocal headings at each speed so that the effect of head and tail wind can be averaged out. The averaged ground speed is assumed to be true speed. The aircraft should be allowed to drift with the wind so that the adverse effect of cross wind can be eliminated. The test should not be conducted on a windy day for any ahifting winds introduce error in trie apeed. The aircraft should be fatrly well stabilized as the timing gives average speed. However, the holding of an exact speed is not critical. The speed courseshould be flown at least one wing span above the ground to be out of ground effect. This distance should be kept to a safe minimum, however, becauee of the need for an estimation of the aircraft helght.

Theoretically, this method is good for all lovel flight apeede above the atalling speed of the afrcraft. The accuracy obtained, howevor, 1a a function of the timing method and the length of the course and dimintabes as apes increasen. At high apeede errore in time
measurement may cause the error in airspeed to be obscured by errors in the measurement of true speed. Therefore, this method gives best results at !ow speeds and can be used at high speeds only if adequate timing equipment is used and the course is relatively long. The Air Force Flight Test Center maintains a ground speed course approximately 4 miles long. Time is kept with a stop watch operated by the pilot or by an aircraft observer. This course is not used for speeds above 250 knots.

The accuracy of the ground speed cour se is poor even in the low speed range. There is always a scatter of points due to timing errors, shifting winds and the estimate of temperature at aircraft height which is needed for calculation of true speed. However, the resuits obtained at low speeds are in general better than those obtained by the tower flyby method.

The ground speed course is inexpensive and very simpie to maintain and operate. Each double point takes approximately 10 minutes for the flight and 10 minutes for manual data reduction.

A variation of the ground speed course is the photogrid method. The test is conducted in the same manner except that true speed is determined by means of a camera, a timer, and a calibrated grid installed in a control tower or other vantage point by a runway. As the aircraft passes the camera station, photographs are taken through the grid. The film record gives accurate speed and altitude of the aircraft. (See Figure 5. 10.) This method can be used only when a low wind condition exists or when the wind direction is approximately parallel to the runway or the same errors will be introduced as when crabbing on a speed course.

5.6.3 The Pacer Method (See Data Reduction Outline 7.7):

Thi tower fly-by and ground speed course methode which have been discussed are good for low altitude calibrations. These callbrations may be extrapolated to higher altitudes as discussed in Section 5.4. However, such extrapolations are not always poseible. Furthermore, any extrapolations that are made should be checked at altitude. Therefore, calibration methods are necessary by which an aircraft can be calibrated at altitude. One such method is the pacer method in which the test aircraft is calibrated against another previously calibrated aircraft called a pacer. This method is very useful when frequent routine calibrations of aircraft are required.

In the basic form of this method the test aircraft and pacer are flown side by side approximately one wing epan apart to prevent alrcraft preesure field interaction. When the atzcraft are stabilized at the dusired speed and altitude, the pilote read the airspeed and altitude stmultineouly, or record the data on a photopanel. (See Figure 5.1L) A static proanure calioration can be obtained directly from a comparison
of the altitudes or indirectly from a comparison of airapeeds. By comparing both altitude and airopeed readings a check can be made for error in the total pressure system. (An error in total pressure should be suspected if $\Delta V_{p c}$ determined by a comparison of airspeeds is consistently greater than $\Delta V_{p c}$ determined by a comparison of altimeter readings.) This procedure is followed for a series of speeds at a given altitude to determine the static pressure error as a function of airspeed for that alttude. In this form, the pacer method is limited to the altitude and speed capabilitics of the reference aircraft.

Calibrated Aircraft Pllot Records:
Indicated Airspeed, V_{1}
Indianted Altitude, H_{i}

Test Aircraft Pilot Records: Indicated Alrspeed, V_{1} Indicated Altitude: H_{i}

Pressure Altitude of Both Aircraft, H_{c} $=$ Calibrated Aircraft's $H_{i}+\Delta H_{i c}+H_{p c}$

Figure 5.il
The Pacer Method
It is possible to make calibrations at speeds greater than the speed capabilities of the reference alrcraft by the use of a variation called the aircraft fly-by method. Here, the test aircraft flies past the pacer aircraft at the same altitude. With the pressure altitude known from the pacer callbration, the static pressure error may be obtained at any
speed for that altitude. It has the advantage over the basic method in that it is faster as it is not necessary to stabi،ize the airspeed. In the aircraft fly-by method; it is necessary that both aircraft be at the same altitude. Any deviation may be estimated or the test aircraft may be photographed as it passes by. It is helpful if the pacer aircraft can lay a trai., for example a contral!, as a reference. This aliows the test aircraft to accelerate up the reference trail with data being taken as it closes on the pacer aircraft and then either pass the pacer or tecelerate back down the reference trail. The acceleration-deceleration technique has the advantage that with data taken both ways the effect of lag can be averaged out or shown to be negligible. This technique is very useful for obtaining data in the transonic region. It is possible to get data up to Macin 1.2 or so with a subsonic pacer. Use of a contrail provides very accurate data since the altitude of a contrail does not usually vary more than 20 or 30 feet within 2 miles of the source. One disadvantage is that persistent contrails aro sometimes difficult to obtain. In this case the pacer shouid be equipped with a smoke generator capable of leaving a well defined trail. Use of a smoke generator is presently imited to non-afte ituring operation, however, since the smoke from existing smoke generatioris is nearly dissapated by the jet exhaust in afterburning.

The calibration of the test aircraft is, of course, only as good as the pacer calibration. For this reason aircraft must be kept exclusively as pacers. They should be calibrated in flight and have their instruments recalibrated at least once a month to insure the accuracy of their calibrations.

The primary advantages of the pacer method over other altitude nethods are the simplicity of scheduling, testing and data reduction, the speed and accuracy with which results can be obtained and the fact that the pacer is not restricted to one geographical area. In short, the pacer method is more convenient.

The practicality of the pacer method as compared to other methods depends on how often calibrations are required. Unless calibrations are required relatively frequently the cost of maintaining aircraft solely as pacers is prohibitive. However. when frequent calıbrations are required, the pacer method becomes very practical. In general, the cost of keeping the pacer in the air is offset by the reduction in flying time necessary to establish a calibration.
5.6.4 $\frac{\text { Altitude Pressure Comparison Methods Requiring Pressure }}{\text { Survey (See Data Reduction Outine } 7.8 \text {): }}$

In this method the position of the aircraft in flight is fixed in space by the use of a radar-theodolite system or a phototheodolite complex such as an Askania range. The static pressure error is determined by comparing the aircraft indicated altitude to the pressure altitude which is determined from the tapeline altitude by means of a pressure survey.

The pressure survey can be conducted in one of several ways:

1. The test alrcraft can be tracked by the radar or phototheodolite equipment as it climbs through the required altitude range at a low speed for which the static pressure error is known. It is then flown through the surveyed region at higher speeds for which a calibration is desired. It is possible to use another aircraft which has previously been calibrated to make this pressure survey. In ether case, it should be noted that a survey made using this technique can be no better than the original calibration.
2. A radiosonde ballontransmitting pressure measurements can be tracked to determine pressure as a function of tapeline allitude.

Better accuracy can be obtained by the use of a modified pressure capsule which is more accurate.
3. Data from a radiosonde balloon transmitting temperature and pressure can be used to find temperature as a function of pressure and the relation between altitude and pressure deduced by integration

$$
\mathrm{H}=-\frac{\mathrm{R}}{\mathrm{G}} \sum_{\mathrm{P}_{\mathrm{aSL}}}^{\mathrm{P}_{\mathrm{a}}}\left(\frac{\mathrm{~T}_{\mathrm{a}}}{\mathrm{P}_{\mathrm{a}}}\right)\left(\Delta \mathrm{P}_{\mathrm{a}}\right)
$$

This integration is discussed in 'Mach Number Measurements and Calibrations During Flight at High Speeds and at High Altitudes Including Data for the D-558-II Research Airplane,' NACA RM H55J18, 1956 (Confidential) by Brunn and Stillwell. With the use of the same equipment, this method gives much better results than does tecnnique 2.

The results of the pressure survey are plotted as pressure or pressure altitude versus tapeline altitude. The test aircraft is then flown in the surveyed region, recording airspeed and altitude as the radar or phototheodolite records height. The true pressure altitude for each test point is determined fron the radar height and pressure survey curve. (See Figure 5.12).

Radar Recorcis:

Height

Calibrated Aircraft Pilot Recorde: Indicated Airspeed, V_{i} Indicated Altitude, H_{1}
Then:
$H_{c}=H_{i}+\Delta H_{i c}+\Delta H_{p c}$
Resulta of Survey Plotted As

CALIBRATION
Radar Records: Height
Test Aircraft Pilot Records:
Indicated Airspeed, V_{i}
Indicated Altitude, H_{i}
Then:
$H_{C}=$ Pressure Altitude at Rada: Height on Survey Plot.

Figure 5.12
Altitude Pressure Comparison Method Using Radar

When a phototheodolite system is used the aircraft is tracked from a series of stations with cameras to determine the position in space. The tapeline altitude fotermined by triangulation. A minimum of two stations is required for a fix. It is desirable to obtain data from more stations to give additional fixes, which reduces the uncertainty of the measurement. The accuracy with which tapeline altitude can be obtained is very good. However, the overall accuracy of the pressure error determation is limited by that of the pressure нurvey. Because of the complextty of the tracking system, the data must be processed on a digital computer. Hence,
the data reduction time is apt to be quite large. In addition, the process is quite expensive as it requires costly equipment, large crews to malntain and operate the equipment, and machine data reduction.

The tapeline altitude can be calculated from the elevation and slant range given by a radar-theodolite assembly. The data reduction for this type of installation is much less time consuming than that required by the above installation as one station gives all the necessary information. The radar unit will not give quite as accurate results as those which can be obtained with the photo-theodolite range but its accuracy can be at least as good as that of the pressure survey.

At the Air Force Flight Test Center, radar tracking has been found to be verysatisfactory, reliable and relatively economical. Pro:ided that the target carries a beacon, it can be tracked out to a slant range of nearly 100 miles. More refined information, obtained by using a bore-sight camera to correct for radar hunt in azimuth and elevation, can be obtained out to about 20 miles, jepending on contrast and so on. The accuracy of the height data is comparable to that with which the associated pressure can be measured or computed. but good velocity data cannot be obtained unless the target is flying in a steady manner. This is illustrated in Figure ${ }^{5} .13$ in which a time history from a typical radar calibration is given. A. relatively low frequency hunt is apparent which prevents use of the data to deduce veiocity unless quite a long record can be averaged. However. when the aim is to calibrate the static pressure source. the radar method is used because of its simplicity and economy. When a more frecise trajectory is required, capable of yielding ground speeds directly, the Askania range is used. This gives subs*antial improvement in precision but cost and complication are much greater than those of a radar calibration. A minimum of four cameras is considered essential and six or more are used if the target is to be tracked over a distance of the order of that covered by the bore-sight radar.

Figure 5.13
Results of a Radar Calibration Showing
Typical Low Frequency Hunt

These techniques are costly and tedious but they can be used in many situations where some of the less complicated methods fall. They permit calibrations in high speed dives and maneuvers, as well as in level flight, and allow calibration of rocket powered aircraft and missiles as long as they stay within the range of the tracking equipment.
5.6.5 The All-Altitude Speed Course:

The principle of the ground speed course can be used at altitude to determine the error in airspeed measurement in the aircraft pitot-static system. However, the establishment of an altitude speed course which will give comparable accuracy is difficult. It is necessary to use an elaborate timing device and electronic or optical means to cestablish the course length. The accurate measurement of temperature at altitude presents a problem. One must rely either on a previously calibrated free air temperature probe or the weather service and a pressure survey. Also the higher winds which usually exist.at altitude cause considerable scatter of data. Therefors, the specd course is ret recommended for
altitude calibrations.
A certified speed course has been established at the AFFTC for the purpose of obtaining internationally accepted speed records. It is possible to use this course as a speed course to obtain position error. It ia an optical course approximately 10 miles long at 35,000 feet. The overall accuracy of the speeds obtained are to the order of 0.15 percent. Therefore, there is little error in the measurement of ground speed by this method. However, the problems of conversion to true speed and calibrated airspeed and the determination of pressure altitude make the use of the course for this purpose quite impractical.
5.6.6 The Trailing Bomb Method:

In this method a static pressure source is built into a "bomb" which is suspended on a long cable and allowed to trail well below and aft of the aircraft so as to be out of the aircraft pressure field and thus to recordfree stream static pressure. This is compared to the indicated static pressure (or altitude) to give the static pressure error. The pressures from the two sources may be connected by means of a sensitive differential pressure gage to give the pressure error direttly. Hence the accuracy can be very good as long as the tralling bomb is out of the aircraft pressurefield

At low speeds the weight of the bomb is enough to keep it below the test aircraft. At higher speeds, say above 200 knots indicated, the bomb must be fitted with omall wings set at a negative angle of attack to keep it out of the slipstream of the aircraft. This, however, introduces the instability problems of a towed glider.

This method is gooi at stalling speed as long as the downwash at high angles of attack does not cause instability. The upper limit in speed is the speed at which the system encounters high speed instability. It is believed that this high speed instability is due to cable oscillations which origanate near the aircraft and are amplified by aerodynamic forces as they travel down the cable.

Years ago when aircraft were not capable of high speeds this was a very popular method. In the case of modern aircraft, this method has lost its popularity because of the high speed instability problem. It is still sometimes used, however, for the calibration of low speed aircraft such as transports.

SECTION 6
 CALIBRATION OF THE FREE AIR TEMPERATURE INSTRUMENTATION

6.1 INSTRUMENT ERROR

The major errors in the temperature indicating eystem are a result of variation of the resiatance temperature coefficient in the eenoing element and electrical defecte in the bridge circuit and ammeter. Errora cauesd by the sensing elernents are minimtzed by the selection of good quality eiemente from the manufacturer' lote. The standard tolerance is ± 2 degreen C; however, unite having maximum error of ± 0.5 degrees C are aelected for flight teat work. A laboratory callbration ie conducted to determine errors in the bridge circuit and indicator. The inetrument ie calibrated every 2 degreea C over tine temperature range of anticipated use. A typical calibration plot is trowa in Figure 6.1.

Figure 6.1
Free Alr Tomperature Inntrument Calibration Plot

The indicated temperature corrected for inetrument error (T_{ic}) is obtalned from this curve, as

$$
T_{i c}=T_{i}+\Delta T_{i c}
$$

where
$T_{i}=$ indicated temperature
$\Delta T_{\text {ic }}=$ iree alr tomperature inatrument correction correnponding to T_{q}

6. 2 DETERMINATION OF THE TEMPERATURE PROBE RECOVERYEACTOR

 The equation for the free air temperature probe was derived in Section 2.4 1 =$$
\frac{T_{\text {ic }}}{T_{a}}=1+\frac{K M^{2}}{5}
$$

where

$$
\begin{aligned}
& T_{a}=\text { free air temperature, } \mathrm{K} \\
& \mathrm{~T}_{\mathrm{ic}}=\text { indicated temperature corrected for inetrument error, } \\
& M \quad \text { - free atream Mach number } \\
& \mathbf{K} \quad \text { = temperature probe recovery factor }
\end{aligned}
$$

Valuee of K hould be determined in flight at they depend on the installation. Usually at aubsonic apeeds variation in K with Mach number and altitude le nec significant. At supersonic epeede, however, where temperature rises are much larger, variatione in K may exist which muet be wall ectablished in order that ambient temperaturea may be calculated accurataly, It ie considered advisable to determine values of K throughout the epeed range at a high and a low altitude to inveatigate poasible variatione in K. Thie le quite frequently done in conjunction with one or mare of the airepeed calibration methode described in Section 5. Several techniquee are diecuesed in the following paragraphs by which temperature probe recovory factors can be determined. The use of radiosonde temperaturea in lieu of data derived from lree air temperature inetrumenta ie aleo considered.

1. Tho aircraft is flown at a aerime of Mach numbers and the data ie plotted as K versus M where

$$
K=\left(\frac{T_{i c}}{T_{a}}-1\right) \frac{5}{M^{2}}
$$

This data is readily obtained in conjunction with alrepeed callbratione when a pacer alrcraft to ued, since amblent temperatures can be obtatned witia a calibrated probe. The reaulte of a typical calibration are given in Figure $6,2$.

Figure 6.2
Plot of K veraus M Used to Determine The Temperature Probe Recovery Factor, K

Indicated temperatures, recorded while conducting apeed-power testa, together with radiosonde temperatures may be used conveniently to make a similar presentation. Care must be taken in this case to avoid aystomatic errors in ambiont temperature measurementa.
2. The aircraft in flown at a series of peede at a constant pressure altitude. It is therefore necoseary to prepare tables in advance showing altimetor reading $\left(H_{i}\right)$ at which the atrcraft in to be flown for each alrapeed.

$$
H_{i}=H_{c}-\Delta H_{1 c}-\Delta H_{p c}
$$

where
H_{c} = pressure altitude at which test is to be made $\Delta H_{i c}=$ altimeter instrument correction corresponding to H_{i} $\Delta H_{p c}=$ altimeter position error correction corresponding to $H_{i c}$ The results are plotted as $l / T_{i c}$ versus $M^{2} / T_{i c}$. When this is done, th: slope of a line faired through the data is equal to ($-\mathrm{K} / 5$; as

$$
\frac{1}{T_{i c}}=\frac{1}{T_{a}}-\frac{K}{5} \frac{M^{2}}{T_{i c}}
$$

The intercept on the $l / T_{i c}$ axis is l / T_{a}. Repeat tests made at different air temperatures will give a series of parallel straight lines if K is a constant for the installation. Figure 6.3 shows a plot where runs have been made at two altitudes.

Figure 6.3
Plot of $\psi T_{i c}$ veraus $M^{2} / T_{i c}$ Used to Determine the Temperature Probe Recovery Factor, K

This method has the advantage that K can be determined independently of Ta, although it is essential that it remains constant. If T_{a} is known, say from radiosonde data, it can be used to help establish the slope of the line.
3. Recovery factors can also be determined in confunction with airspeed calibrations made with the tower fly-by method. In this case a very nearly constant pressure altitude is maintained during each pass by the tower. By recording temperature in the tower and in the aircraft for each pass, the value of K can be established using either of the presentations described in the preceeding paragraphs. This method assumes that temperatures recorded in the tower are the same as the ambient temperatures at the probe located on the aircraft. Errors may be incurred if the aircraft is flown higher than the tower, which it usually is, and a pronounced temperature gradient exists. Tower fly-bys are best made during the early morning, however, when the air is most stable near the ground and temperature gradients are small.
4. The speed course method of obtaining airspeed calibrations also yields data from which values of K can be computed. From Section 2.52

$$
\begin{equation*}
M=\frac{V_{t t}}{38.967 \sqrt{T_{\mathrm{at}}}} \tag{2. 36}
\end{equation*}
$$

Substituting this expression into equation 2.30

$$
T_{i c}=T_{a}+\frac{K V_{t}^{2}}{7592}
$$

where V_{t} is in knots and $T_{i c}$ and T_{a} are in ${ }^{\circ} K$. The results are plotted as $T_{i c}$ versus V_{t}. Then, the slope of a line faired through the data is equal to ($+\mathrm{K} / 7592$). The intercept on the T_{ic} axis is T_{a}. (See Figure 6.4)

Figure 6.4
Plot of $t_{i c}$ vs V_{t}^{2} Used to Determine the Temperature Probe Recovery Factor, K
T_{a} can be used with this method also as an aid in establishing the slope of the line through the test points. It is necessary, however, to have low wind conditions or a considerable error in V_{t}^{2} and hence K may result.

When the value of K is established, free air temperature is most easily determined from equation 2.30. Chart 8.2 has been included in Section 8 to facilitate this operation.

Temperature probe recovery facturs for supersonic flight may be determined from the methods deecribed in paragraphs 1 and 2 above. Supersonic pacer aircraft with well established probe calibrations for the flight conditions obtained with high speed test aircraft are not generally
available, however, the method described in paragraph 2, where the test aircraft is flown at constant pressure altitude, may be used but additional flight time will probably be required to define K values satisfactorily. Consequently, the use of radiosonde data is likely to be best at supersonic speeds. Recommended temperature accuracies of radiosondes listed in Air Weather Service TR105-133 are

```
\pm 1.5 年 from + 40 % to - 50 %
\pm 2.0 % Crom-50. C to - }7\mp@subsup{0}{}{\circ}\textrm{C
\pm3.0}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ from - }7\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to - }9\mp@subsup{0}{}{\circ}\textrm{C
```

These values were recommended as representing reasonable accuracies to be expected of the temperature data obtained from radiosondes used by the various United States meteorological services. For most accurate results, ambient temperatures from radiosonde data should be based on three or more soundings obtained from stations surrounding the area in which the test aircraft is flown. These soundings should be made within 2 or 3 hours of the time test data is raken. Also, it is best to examine the most recent weather charts prior to flight so that possible frontal passages with significant temperature differences may be avoided.

SECTION 7

DATA REDUCTION OUTLINES

7.1 CORRECTION OF AIRSPEED INDICATOR AND ALTIMETER FOR PRESSURE LAG DURING CONSTANT CLIMB, CONSIANT DESCENT, AND/OR ACCELERATION (See Section 4.2)

1	$\lambda_{s S L}$	sec	Altimeter Lag Constant at Standard Sea Level, from previous calibration
2	$\lambda_{t S L}$	sec	Total Pressure Lag Constant at Standard Sea Level, from previous calibration
3	$\mathrm{V}_{\text {ic }}$	knots	Indicated Airspeed Corrected for Instrument Error
4	H_{ic}	feet	Indicated Altitude Corrected for Instrument Error
5	$\mathrm{dH} \mathrm{ic} / \mathrm{dt}$	$\mathrm{ft} / \mathrm{min}$	Apparent Rate of Climb (+) or Descent (-), from time history of (4) or from R/C indicator
6	$d V_{i c} / \mathrm{dt}$	$\mathrm{kt} / \mathrm{sec}$	Apparent Acceleration (t) or Deceleration (-), from time history of (3)
7	$\mathrm{t}_{\mathbf{a}}$	${ }^{\circ} \mathrm{C}$	True Atmospheric Temperature, from $t_{i c}$ and K and M and Chart 8.2 or from weather service.
8	$\lambda / \lambda{ }^{\lambda} \mathrm{ic}$		Lag Constant Temperature Correction, from (4) and (7) and Chart 8.62
9	$\overline{\lambda_{s H_{i c}}} / \overline{\lambda_{s S L}}$		Static Pressure Lag Constant Ratio, from (4) and Chart 8.61 for $V_{i c}=$ STATIC
10	$\lambda_{t \mathrm{H}_{\mathrm{ic}}} /{ }^{\lambda} \mathrm{tSL}$		Total Pressure Lag Constant Ratio, from (4) and (3) and Chart 8.61
11	λ_{s}	sec	Altimeter Lag Constant. (1) $\times(8) \times(9)$
12	λ_{t}	sec	Total Pressure Lag Constant, (2) $\times(8) \times(10)$
13	$\Delta \mathrm{H}_{\mathrm{icl}}$	feet	Altimeter Lag Correction, (11) $\times(5) \div 60$

14	$F_{\lambda}\left(H_{i c}, V_{i c}\right)$		Airspeed Indicator Lag Factor, from (3) and (4) and Chart 8.63
15	$\Delta V_{i c l}$	knots	Airsped Indicator Lag Correction, (12) \times $(6)+[11)-(12)] \times(14) \times(5) \div 60$
16	$\mathrm{H}_{\mathrm{ic}}!$	feet	Indicated Pressure Altitude Corrected for Instrument and Lag Error, (4) +(13)
17	$\mathrm{~V}_{\mathrm{icl}}$	knots	Indicated Airspeed Gorrected for In - strument and Lag Error, (3) $+(15)$

7. 2 LABORATORY CALIBRATION FOR THE STATIC PRESSURE LAG CONSTANT (See Section 4. 3)

Case a: When pressure gages are used

1			Counter Number
2	t	sec	Time
3	T_{a}	${ }^{\bullet} \mathrm{K}$	Room Temperature, ${ }^{\circ} \mathrm{C}+273.16$
4	$\mathrm{P}_{\text {sl }}$	${ }^{\text {" }} \mathrm{Hg}$	Probe Enclosure Static Pressure Gage Reading
5	P_{8}	${ }^{\mathrm{Hg}}$	Aircraft Static Pressure Gage Reading
6	Plot (4) and (5) versus (2) on one graph. (At any pressure coordinate, the time difference between (4) and (5) is the static pressure lag constant for that pressure. This lag will decrea. e as pressure increases.)		
7	λ_{8}	sec	Static Pressure Lag Constant for any Pressure, from (6)
8	$\mathrm{P}_{8} / \mathrm{PaS}_{\text {L }}$		Pressure Ratio at the Pressure used to Determine (7)
9	$\lambda_{s S L}$	sec	Sea Level Static Pressure Lag Constant, $(7) \times(8) \times \frac{28}{(3)}$

Case b: When altimeters are used

1			Counter Number
2	t	sec	Time
3	T_{a}	${ }^{\circ} \mathrm{K}$	Rcom Iemperature, ${ }^{\circ} \mathrm{C}+273.16$
4	H_{11}	feet	Probe Enclosure Alimmeter Readirg
5	$\Delta H_{i c}$	feet	Probe Enclosu, Altimeter Instrument Correction Corresponding to (4)
6	$\mathrm{Hicl}^{\text {l }}$	feet	Probe Enclosure Simulated Pressure Altitude, Correcied for instrument Error, $(4)+(5)$
7	H_{i}	feet	Aircraft Altimeter Reading
8	$\Delta \mathrm{H}_{\mathrm{ic}}$	feet	Aircraft Altimeter Instrument Correction Corresponding to (7)
9	$\mathrm{H}_{\text {ic }}$	feet	Arcraff Indicated Fressure Altitude Corrected for Instrument Error, (7) + (8)
10	Plot (6) and (9) versus (2) on one graph. (At any altitude coordinate, the time difference between (6) and (9) is the static pressure lag constant for that altitude. This lag wlll increase as altitude increases.)		
11	λ_{s}	sec	Static Pressure Lag Constant for any Altitude, from (10)
12	$\mathrm{P}_{\mathbf{s}} / \mathrm{PaSL}$		Pressure Ratio at the Pressure msed to Determine (11)
13	$\lambda_{s S L}$	sec	Sea Levei Static Pressure Lag Constant, $(12) \times(11) \times \frac{288.16}{(3)}$

7. 3 LABORATORY CALIBRATION FOR THE TOTAL PRESSURE LAG
CONSTANT (See Section 4. 3)

Case a: When pressure gages are used

1			Counter Number
2	t	sec	Time
3	T_{a}	${ }^{\bullet} \mathrm{K}$	Room Temperature, ${ }^{\circ} \mathrm{C}+273.16$
4	$\boldsymbol{P}_{\mathbf{t}^{\prime} 1}$	${ }^{\sim} \mathrm{Hg}$	Probe Enclosure Total Pressure Gage Reading
5	Pt	${ }^{\mathrm{m}} \mathrm{Hg}$	Aircraft Total Pressure Gage Reading
6	Plot (4) and (5) versus (2) on one graph. (At any pressure coordinate, the time difference between (4) and (5) is the total pressure lag constant for that pressure. This lag will decrease as pressure increases.)		
7	λ_{t}	sec	Total Pressure Lag Constant for any Preasure, from (6)
8	$P_{t}{ }^{\prime} / \mathrm{PaSL}$		Pressure Ratio at the Fressure Used to Determine (7), (5)/29.92
9	$\lambda_{\text {tSL }}$	sec	Sea Level Total Pressure Lag Constant, $(7) \times(8) \quad \frac{288,16}{(3)}$

Case b: When airspeed indicators are used

1			Counter Number
2	t	sec	Time
3	$\mathrm{~T}_{\mathrm{a}}$	$\bullet \mathrm{K}$	Room Temperature, ${ }^{\circ} \mathrm{C}+273.16$
4	P_{a}	NHg	Room Ambient Pressure
5	$\mathrm{~V}_{\mathrm{il}}$	knots	Probe Enclosure Airspeed Indicator Reading
6	ΔV_{ic}	knots	Probe Enclosure Airspeed Indicator Instru- ment Correction Corresponding to (5)
7	$\mathrm{~V}_{\mathrm{icl}}$	knots	Probe Enclosure Indicated Airspeed Corrected for Instrument Error, (5) + (6)

8	V_{i}	knots	Aircraft Airspeed Indicator Reading
9	$\Delta v_{\text {ic }}$	kno:s	Alreraft Alrspeed Indicator Instrument Correction Corresponding to (5)
10	$\mathrm{V}_{\text {ic }}$	knots	Aircraft Indicated Airspeed Corrected for Instrument Error, (8) + (9)
11	Plot (7) and (10) versus (2) on one graph. (At any alrspeed coordinate, the time difference between (7) and (10) is the total pressure lag constant for that airspeed. Thls lag will decrease as airspeed increases.)		
12	λ_{t}	sec	Total Pressure Lag Constant for any Airspeed, from (11)
13	9 cic	" Hg	Differentlal Pressure Corresponding to the Airspeed Used to Determine (12), from Table 9.6
14	$P_{t}{ }^{\prime}$	" Hg	Tolal Pressure Corresponding to the Airspeed Used to Determine (12), (4) + (13)
15	$\mathrm{P}_{\mathrm{t}}{ }^{\prime} / \mathbf{P}_{\mathrm{aSL}}$		Pressure Ratio at the Airspeed Used to Determine (12), (14)/29.92
16	$\lambda_{\text {tSL }}$		Sea Level Total Pressure Lag Constant, $(12) \times(15) \times \frac{288.16}{(3)}$

7.4 PRESENTATION OF RESULTS OF POSITION ERROR CALIBRAIIOINS
AND EXTRAPOLATION PROCEDURES (See Section 5.4)

A position erior calibration is usually conducted at a series of speeds for ativen altitude. From this data it is possible to determine $\Delta V_{p c}$ (and/or $\Delta \mathrm{P}_{\mathrm{p}} / \mathrm{q}_{\mathrm{cic}}$) for a series of V_{ic} (or $\mathrm{Mic}_{\mathrm{ic}}$) at a given H_{ic} as shown in Data Reduction Outlines 7.5, 7.6, 7.7 and 7.8. This information should be plotted in accordance with the following outline:

For $M_{i c}<0.6$, plot $\Delta V_{p c}$ versus

For $M_{i c}>0.6$, plot $\Delta P_{P} / q_{c i c}$ versus $M_{i c}$ for $H_{i c}$

The plot of $\Delta V_{p c}$ versue $V_{i c}$ is good for all altitudes for which there are no Mach number offects. (Mach number offecte will appear as altitude breakoffe at the high speed ond of the curve.) The plot of $\Delta P_{p} / q_{c i c}$ versus $M_{i c}$ is good for all altitudes for which there are no $C_{\text {Lic }}\left(\mathrm{aW} / \delta_{\text {ic }}\right.$) effecte. (Buch effecte will appear an $\mathrm{aW} / \delta_{\text {ic }}$ breakoffa, usually at the low apeed ond of the curve.) A check at a eecond altitude should be made to see if there are any auch altitude breakoffa: The fellowiag typical reeult may be obtained.

In the final report, the position error is usually plotted as $\Delta H_{p c}$ and $\Delta V p c$ versus $V_{i c}$ for constant $H_{i c}$. For each $H_{i c}$ for which such plots are desired:

1	$\mathrm{H}_{\text {ic }}$	feet	Indicated Altitude Corrected for Inatrument Exror for which plot is desired.
2	$V_{\text {ic }}$	knots	Arbitrary Indicated Airapeed Corrected for Instrument Error.
3	$M_{i c}$		Indicated Mach Number Corrected for Instrument Error, from (1) and (2) and Chart 8. 5.
4	$\frac{\Delta P_{p}}{q_{\text {cic }}}$		Position Error Pressure Coefficient, from plot of $\Delta P_{p} / q_{\text {cic }}$ veraus $M_{i c}$ for (3) and (1).
5	$\Delta V_{\text {pc }}$	knots	Airspeed Indicator Position Error Correction, from (2) and (4) and Chart 8.11 or from plot of $\Delta V_{p c}$ versus $V_{i c}$ for (1) and (2).
6	$\Delta H_{p c}$	feet	Altimeter Position Error Correction, f. 5) and (2) and (1) and Chart 8.13. (For amall errors, say $\Delta V_{p c}<10$ knots, the approximate Chart 8.12 may be used.)
7	Plot $\Delta V_{p c}$ and $\Delta H_{p c}$ versus $V_{i c}$ for $H_{i c}$. Repeat for other $H_{i c}{ }^{*}$ *		

* In the case of low speed aircraft in which there are no $M_{i c}$ effects or high speed alrcraft in which there are no $n W / \delta_{i c}$ effects, the curve of $\Delta H_{p c}$ versus $V_{i c}$ for one altitude can be extrapolated to other altitudes by the following procedure:

Cagea: Low Specd Atrcraft (No $M_{i c}$ effect)

1	feet	Indicated Altitude Corrected for Instru- ment Error Corresponding to an Arbitrary $V_{i c}$	
2	$\Delta H_{p c l}$	feet	Altimeter Position Error Correction Corresponding to (1)
3	σ_{1}		Density Ratio Corresponding to (1), from Table 9.2
4	$H_{i c 2}$	feet	Arbitrary Indicated Altitude Corrected for Instrument Error
5	σ_{2}		Density Ratio Corresponding to (4), from Table 9.2
6	$\Delta H_{p c 2}$	feet	Altimeter Position Error Correction Corresponding to (4) forsame Vic as (1), (2) x (3) \div (5)

Case b: High Speed Aircraft (No $n W / \sigma_{\text {ic }}$ effect)

1	Hicl	feet	Indicated Altitude Corrected for Instrument Error Corresponding to an Arbitrary Vic.
2	$\triangle H_{p c l}$	feet	Altimeter Position Error Correction Corresponding to (1)
3	Tasl	${ }^{*} \mathbf{K}$	Air Temperature Corresponding to (1), from Table 9.2
4	Hic^{2}	feet	Arbitrary Indicated Altitude Corrected Iur Instrument Error
5	Tae2	${ }^{\bullet} \mathbf{K}$	Air Temperature Corresponding to (4), from Table 9.2
6	$\Delta H_{\text {Pc }} 2$	feet	Altimeter Poeition Errox Correction Corresponding to (4) for ame $\mathrm{V}_{\text {ic }}$ as (1), R) $\times(5) \div(3)$

7.5 THE TOWER FLY-BY METHOD (See Section 5.6.1)

1			Pass Number
2			Time of Day
3			Theodolite Reading
4	$\Delta \mathrm{h}$	feet	Aircraft Height Above (+) or Below (-) Theodolite Reference Altitude, from (3)
5	$\mathbf{P}_{\mathbf{a}}$	${ }^{*} \mathrm{Hg}$	Pressure at Reference Altitude, from weather service or theodolite altimeter set at 29.92 and Corrected for Instrument Error. (lif altimeter is used (6) below is obtained directly.)
6		feet	Theodolite Reference Pressure Altitude, from (5) and standard atmoshere (Table 9.2)
7	$\mathrm{H}_{\mathbf{c}}$	feet	Pressure Altitude of Aircraft, (6) + (4)
8	H_{1}	feet	Aircraft Indicated Altitude
9	$\Delta \mathrm{H}_{\text {ic }}$	feet	Aircraft Altimeter Instrument Correction Corresponding to (8)
10	H_{ic}	feet	Indicated Pressure Altitude Corrected for Instrument Error. (8) + (9)
11	$\Delta H_{\text {pc }}$	feet	Aircraft Altimeter Position Error Correction (7) - (10)
12	V_{1}	knots	Aircraft Indicated Airspeed
13	$\Delta V_{i c}$	knots	Airspeed Indicator Instrument Correction Corresponding to (12)
14	$V_{i c}$	knots	Indicated Airspeed Corrected for Instrument Error, (12) + (13)
15	$\mathrm{M}_{\text {ic }}$		Indicated Mach Number Corrected for Instrument Error, from (10) and (14) and Char 8.5

16	$\Delta V_{p c}$	knote	Airspeed Indicator Position Error Correction, from (10) and (11) and (14) and Chart 8.13. (For small errors, say $\Delta H_{\text {pc }}<1000$ feet, the approximate Chart 8. 12 can be used)
17	$\frac{\Delta P_{p}}{\text { qcic }}$		Position Error Pressure Coefficient, from (14) and (16) and Chart 8.11. (This must be determined only for $\mathrm{M}_{\mathrm{ic}}>0.6$ orso.)

Note: For presentation of results and exis'apolation, see Data Reduction Outline 7.4.
7.6 THE GROUND SPEED COURSE METHOD (See Section 5.6.2)

1			Pass Number
2		feet	Course Length
3	Δt_{1}	sec	Time Across
4	Δt_{2}	sec	Time Back
5	V_{gl}	$\mathrm{ft} / \mathrm{sec}$	Ground Speed Acrose, (2) \div (3)
6	$\mathrm{V}_{\mathrm{g} 2}$	$\mathrm{ft} / \mathrm{sec}$	Ground Speed Back, (2) $\div(4)$
7	V_{t}	$\mathrm{ft} / \mathrm{sec}$	True Speed or Average Ground Speed, (5) + (6) $\div 2$
8	V_{t}	knots	True Speed, $0.5921 \times$ (7)
9	Δh	feet	Estimated Height of the Aircraft Above the Ground
10	${ }^{\mathbf{t}} \mathbf{a}$	${ }^{\circ} \mathrm{C}$	Atmospheric Temperature at Aircraft Height, Ground Temperature - 0.00198 (9)
11	M		Mach Number, from (8) and (10) and Chart 8.4
12	$\mathbf{V}_{\mathbf{i}}$	knots	Indicated Airspeed

13	$\Delta V_{\text {ic }}$	knots	Airspeed Indicator Instrument Correction Corresponding to (12)
14	$V_{i c}$	knots	Indicated Airspeed Corrected for Instrument Error. (12) + (13)
15	H_{i}	feet	Indicated Altitude
16	$\Delta \mathrm{H}_{\mathrm{ic}}$	feet	Altimeter Instrument Correction Corresponding to (15)
17	H_{ic}	feet	Indicated Altitude Corrected for Instrument Error, (15) +(16)
18	M_{ic}		Indicated Mach Number Corrected for Instrument Error, from (14) and (17) and Chart 8.5
19	$\Delta M_{p c}$		Machmeter Position Error Correction, (11) - (18)
20	$\frac{\Delta P_{p}}{q_{\text {cic }}}$		Position Error Pressure Coefficient, from (19) and (18) and Chart 8.18. (For small errors, say $\Delta M_{p c}<0.04$, the approximate Chart 8.17 may be used.)
21	$\Delta V_{p c}$	knots	Airspeed Indicator Position Error Correction from (14) and (20) and Chart 8.11

Note: For presentation of results and extrapolation, see Data Reduction Outline 7.4

7.7 THE PACER METHOD (See Section 5.6.3)

Case a: The Stabilized Flight Method

1			Pass Number
2	H_{c}	feet	Pressure Altitude, pacer $H_{i}+\Delta H_{i c}+\Delta H_{p c}$
3	V_{c}	knots	Calibrated Airspeed, pacer $V_{i}+\Delta V_{i c}+\Delta V_{p c}$

4	H_{i}	feet	Test Aircraft Indicated Altitude
5	$\Delta H_{i c}$	feet	Test Aircraft Altimeter Instrument Correction Corresponding to (4)
6	H_{ic}	feet	Test Aircraft Indicated Altitude Corrected for Instrument Error, (4) + (5)
7	$\Delta H_{P C}$	feet	Test Aircraft Altimeter Position Error Correction (2) _ (6)
8	V_{i}	knots	Test Aircraft Indicated Airspeed
9	$\Delta V_{\text {ic }}$	knots	Test Aircraft Airspeed Indicator Instrument Correction Corresponding to (8)
10	$\mathrm{V}_{\text {ic }}$	knots	Test Aireraft Indicated Airepesd Corrected for Instrument Error, (8) + (9)
11	$\Delta V_{p c}$	knots	Tent Aircraft Airspeed Incicator Position Error Correction, (3) - (10) or from (7) and (6) and (10) and Chart 8.13. (For small errors, eay $\Delta H_{p c}<1000$ feet, the approximate Chart 8.12 maybe used.)

Note: With the altimeter and airspeed indicator systems both 18 ing the same static source, $\Delta H_{p c}$ and $\Delta V_{p c}$ are related according to Chart 8.12 or 8.13. In the pacer calibration $\Delta H_{p c}$ and $\Delta V_{p c}$ are buth determined independently; hence one of the values is redundant. The altimeter is a much more reliable instrument than the airspeed indicatur regarding such things as repeatabiliry and hysteresis so, ingeneral, it is best to rely on the calibrated $\Delta H_{p c}$ and calculate $\Delta V_{p c}$. It is possible, however, for low airspeeds and low altitudes that $\Delta V_{p c}$ may give better results。

12	$\mathrm{Mic}_{\text {ic }}$		Indicated Mach Number Corrected for Instrument Error, fro.n (6) and (10) and Chart 8.5
13	$\frac{\Delta P_{p}}{q_{\text {cic }}}$		Position Error Pressure, Coefficient, from (10) and (11) and Chart 8.11. (This step is necessaryonly for $M_{i c}>0.6$ or so.)

Note: For presentation of results and extrapolation, see Data Reduction Outline 7.4

Case b: The Aircraft Fly-By Method

1			Pass Number
2	H_{C}	feet	Pressure Altitude, pacer $\mathrm{H}_{\mathrm{i}}+\Delta \mathrm{H}_{\mathrm{ic}}+\Delta \mathrm{H}_{\mathrm{pc}}$
3	H_{i}	feet	Test Aircraft Indicated Altitude
4	$\Delta \mathrm{H}_{\mathrm{ic}}$	feet	Test Aircraft Altimeter Instrument Correction Corresponding to (3)
5	$\mathrm{H}_{\mathrm{i}} \mathrm{C}$	feet	Test Aircraft Indicated Altitude Corrected for Instrument Error, (3) + (4)
6	$\Delta H_{p c}$	feet	Test Aircraft Altimeter Position Error Correction, (2) (5)
7	V_{i}	knots	Test Aircraft Indicated Airspeed
8	$\Delta V_{\text {ic }}$	knots	Test Aircraft Airspeed Indicator Instrument Correction Corresponding to (7)
9	$\mathrm{V}_{\text {ic }}$	knots	Test Aircraft Indicated Airspeed Corrected for Instrument Error, (7) $+(8)$
10	$\Delta V_{p c}$	knots	Test Aircraft Airspeed Indicator Position Error Correction, from (6) and (5) and (9) and Ciart 8.13. (For small errors, say $\Delta \mathrm{H}_{\mathrm{pc}}<1000$ feet, the approximate Chart 8.12 may be used.)
11	$M_{\text {ic }}$		Indicated Mach Number Corrected for Instrument Error, from (5) and (9) and Chart 8.5
12	$\frac{\Delta P_{p}}{9 \mathrm{cic}}$		Position Error Pressure Coefficient, from (9) and (10) and Chart 8.11. (This step is necessary only for $M_{i c}>0.6$ or so.)

Note: For presentation of results and extrapolation see Data Reduction Outline 7.4

7. 8 ALTITUDE PRESSURE COMPARISON METHODS REQUIRING PRESSURE

 SURVEY (See Section 5.6.4)

2	h	feet	Tapeline Altitude, from radar or Askania data.
3	H_{c}	feet	Aircraft Pressure Altitade, from (1) and (2)
4	H_{i}	feet	Indicated Altitude
5	$\Delta H_{i c}$	feet	Altimeter Instrument Correction Corresponding to (4)
6	$\mathrm{H}_{\text {ic }}$	feet	Indicated Altitude Corrected for Instrument Error, (4) + (5)
7	$\Delta H_{\text {pc }}$	feet	Altimeter Position Error Correction, (3) $-(6)$
8	$\mathbf{V}_{\mathbf{i}}$	knots	Indicated Airspeed
9	$\Delta V_{\text {ic }}$	knot:	Airspeed Indicator Instrument Correction Corresponding to (8)
10	$\mathbf{V i c}_{\text {ic }}$	knots	Indicated Airspeed Corrected for Instrument Error, (8) + (9)
11	$\mathrm{M}_{\text {ic }}$		Indicated Mach Number Corrected for Instrument Error, from (6) and (10) and Chart 8.5

$\Delta V_{p c}$	knots	Airspeed Indicator Position Error Correction, from (7) and (6) and (10) and Chart 8.13. (F.or small errors, say $\Delta H_{p c}<1000$ feet, the approximate Chart 8,12 may be used.)
13	$\frac{\Delta P_{P}}{q_{C i c}}$	Position Error Pressure Coefficient, from (10) and (12) and Chart 8.11. (This step is necessa:y only for Mic >0.6 or so.)

Note: For presentation of results and extrapolation see Data Reduction Outline 7. 4.
7.9 CALIBRATION FOR TEMPERATURE PROBE RECOVERY FACTOR (See Section 6. 2)

Case a: K determined from plot of K versus M

1			Pass Number
2	H_{i}	feet	Altimeter Reading
3	$\Delta \mathrm{H}_{\mathrm{ic}}$	feet	Altimeter Instrument Correction Corresponding to (2)
4	$\mathrm{H}_{\mathrm{i}} \mathrm{C}$	feet	Indicated Pressure Altitude Corrected for Instrument Error, (2) + (3)
5	$\Delta \mathrm{H}_{\mathrm{pc}}$	feet	Altimeter Position Error Correction Corresponding to (4)
6	H_{c}	feet	True Pressure Altitude, (4) + (5)
7	V_{i}	krots	Airspeed Indicator Reading
8	$\Delta V_{i c}$	knots	Airspeed Indicator Instrument Correction Corresponding to (7)
9	$V_{\text {ic }}$	knots	Indicated Airapeed Corrected for Instrument Error, (7) +(8)
10	$\Delta V_{\text {pc }}$	knots	Airspeed Indicator Position Error Correction Corresponding to (9)

11	V_{c}	knots	Calibrated Airspeed, (9) + (10)
12	M		Free Stream Mach Number, from (6) and (11) and Chart 8.5
13	t_{i}	${ }^{\circ} \mathrm{C}$	Temperature Probe Reading
14	$\Delta t_{i c}$	${ }^{\circ} \mathrm{C}$	Temperature Probe Instruinent Correction Corresponding to (13)
15	${ }^{\text {t }}$ ic	${ }^{\circ} \mathrm{C}$	Indicated Temperature Corrected for Instrument Error, (13) + (14)
16	$\mathrm{T}_{\text {ic }}$	${ }^{\circ} \mathrm{K}$	Indicated Temperature Corrected for Instrument Error, (15) + 273.16
17	T_{a}	${ }^{\circ} \mathrm{K}$	Ambient Temperature, from previously calibrated probe or from weather service
18	$\mathrm{T}_{\mathrm{ic}} / \mathrm{T}_{\mathrm{a}}$		$(16) \div(17)$
19	K		Temperature Probe Recovery Factor, $5[118)-1] \div(12)^{2}$
20	Plot (19) versus (12) and fair a line through the points giving an average value for K. Sce Figure 6.2		
21	K		Temperature Probe Recovery Factor, from plot of (20)

Case b: K determined from plot of $1 / T_{i c}$ versus $M^{2} / T_{i c}$
1 to 16 as in case "a" above

17	$1 / T_{i c}$	$1 / \cdot \mathrm{K}$	$1 /(16)$
18	M^{2}		$(12)^{2}$
19	$\mathrm{M}^{2} / \mathrm{T}_{\mathrm{ic}}$	$1 / \cdot \mathrm{K}$	$(18) \times(17)$
20	Plot (17) versus (19) and fair a straight line through the points. (If T_{a} is known it may be plotted aa $1 / \mathrm{T}_{\mathrm{a}}=1 / \mathrm{T}_{\mathrm{ic}}$ at $\mathrm{M}^{2}=0$ and be used to fair in the line.) See Figure 6.3		

Case c: K determined from plot of $T_{i c}$ versus $V_{t}{ }^{2}$ (Speed Course
Method)

1			Pass Number
2		feet	Course Length
3	Δt_{1}	sec	Time Across
4	Δt_{2}	sec	Time Back
5	$V_{t_{1}}$	$\mathrm{ft} / \mathrm{sec}$	Ground Speed Across, (2) $\div(3)$
6	$\mathrm{V}_{\mathrm{t}_{2}}$	$\mathrm{ft} / \mathrm{sec}$	Ground Speed Back, (2) $\div(4)$
7	V_{t}	$\mathrm{ft} / \mathrm{sec}$	True Airspeed, (assumed to be Average Ground Speed, $[(5)+(6)] \div 2$
8	$\mathrm{V}_{\mathrm{t}_{2}}$	knots	True Airspeed, $0.5921 \times$ (7)
9	V_{t}	knots ${ }^{2}$	$(8)^{2}$
10	t_{i}	${ }^{\circ} \mathrm{C}$	Temperature Probe Reading
11	$\Delta t_{i c}$	${ }^{\circ} \mathrm{C}$	Temperature Probe Instrument Correction Corresponding to (10)
12	${ }^{\text {tic }}$	${ }^{\circ} \mathrm{C}$	Indicated Temperature Corrected for Instrument Error, (10) +(11)
13	T_{ic}	${ }^{\bullet} \mathrm{K}$	Indicated Temperature Corrected for Instrument Error (12) + 273. 16

SECTION 8: CHARTS

CHART 8.1

(See paragraph 1.1.3)

GEOPOTENTIAL ALTITUDE, $H\left(G / g_{S L}\right)$, (Thousands o: Feet) versus ALTITUDE CORRECTION FACTOR, $h-H\left(G / g_{S L}\right)$, (Feet)

$$
h-H\left(\frac{G}{g_{S L}}\right)=\frac{H^{2}\left(\frac{G}{g_{S L}}\right)^{2}}{r-H\left(\frac{G}{g_{S L}}\right)}
$$

where: $\quad H=$ geopotential altitude, geopotential feet
$h=$ tapeline altitude, feet
$r=20,930,000$ feet
$G / g_{\text {GL }}=1$ foot/geopotential foot

Example:
Given: $\quad H=70 ́ 500$ geopotential feet
Required: Tapeline altitude, h in feet
Solution: $\quad H\left(G / g_{S L}\right)=76,500$ feet
From Chart 8.1, h $-\mathrm{H}\left(\mathrm{G} / \mathrm{g}_{\mathrm{SL}}\right)=283$ feet
$h=\left[H\left(G / g_{S L}\right)\right]+\left[h-H\left(G / g_{S L}\right)\right]=76,783$ feet

-

弗

ALTITUDE CORRECTION FACTOR, $\quad h-H\left(G / g_{S L}\right)$ (Feet)

CHART 8.2
(See paragraph 2.4)
MACH NUMBER, M vs ATMOSPHERE TEMPERATURE, $T a$ $\left({ }^{\circ} \mathrm{K}\right)$ or $\mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$ for INDICATED TEMPERATURE, $\mathrm{t}_{\mathrm{ic}}\left({ }^{\circ} \mathrm{C}\right)=$ CONSTANT and TEMPERATURF PROBE RECOVERY FACTOR, K = CONSTANT

ALSO

MACH NUMBER, M vs RATIO OF INDICATED TO ATMOSPHERIC TEMPERATURE, $T_{i c} / T_{a}\left({ }^{\circ} K /{ }^{\circ} \mathrm{K}\right)$ for TEMPERATURE PROBE RĖCOVERYFACTOR, K = CONSTANT

$$
\frac{T_{i c}}{T_{a}}=1+K \frac{M^{2}}{5}
$$

Example:
$\begin{array}{ll}\text { Given: } & \mathrm{M}=0.785 ; \mathrm{K}=0.80 ; \mathrm{t}_{\mathrm{ic}}=15^{\circ} \mathrm{C} \\ \text { Required: } & \frac{\mathrm{T}_{\text {ic }}}{\mathrm{T}_{\mathrm{a}}} \text { and } \mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)\end{array}$
Solution: Use Page l of Chart 8.2. For the given conditions, $\frac{T_{i c}}{T_{a}}=1.0985 ; t_{a}=-11.0^{\circ} \mathrm{C}$

$\left({ }^{\circ} \mathrm{K} i^{\bullet} \mathrm{K}\right)$

1.30
1.40
1.45

\% 6

ATMASPHERICARTEMAERATURE

1.350:

MACH NUMBER, M

COMPRESSIBILITY CORRECTION TO CALIBRATED AIRSFEED

$$
v_{t} \sqrt{0}=v_{c}=v_{c}+\Delta v_{c}
$$

CHART 8.3
(See paragraph 2.5.1)

PRESSURE ALTITUDE, H_{c} (Thousands of Feet) versus EQUIVALENT SPEED - MACH NUMBER RATIO, V_{e} / M (Knots)

$$
\frac{\mathrm{v}_{\mathrm{e}}}{\mathrm{M}}=a \sqrt{\sigma}
$$

where a and σ correspond to H_{c}
Example:
Given: $\quad M=0.39 ; H_{c}=18,000$ Feet
Required: $\quad \mathrm{V}_{\mathrm{e}}$ in Knots
Solution: $\quad \frac{\mathrm{V}_{\mathrm{e}}}{\mathrm{M}}=466$ Knots

$$
\mathrm{V}_{\mathrm{e}}=\left(\frac{\mathrm{V}_{\mathrm{e}}}{\mathrm{M}}\right) \mathrm{M}=139.8 \mathrm{Knots}
$$

CHART 8.4

(See paragraph 2.5.2)

TEST DAY TRUE SPEED, V V_{t} versue TEST DAYATMOSPHRAIC TEMPERATURE, $t_{a t}\left({ }^{\circ} \mathrm{C}\right)$ for MACH NOMBER, $M=$ CONSTANT

$$
v_{t t}=38.967 \mathrm{M} \sqrt{\mathrm{t}_{\mathrm{at}}\left({ }^{\circ} \mathrm{C}\right)+273.16} \text {, knots }
$$

A LSO

TRUE SPEED FOR STANDARD DAY, $V_{t a}$ voraus STANDARD DAY ATMOSPHERIC TEMPERATURE, $t_{a s}\left({ }^{\circ} \mathrm{C}\right)$ for MACK NUMBER, $M=$ CONSTANT

$$
V_{t a}=38.967 \mathrm{M} \sqrt{t_{a s}\left({ }^{\circ} \mathrm{C}\right)+273.16} \text {, knots }
$$

where $t_{\text {as }}$ corresponds to H_{c}.

Examplo:
Given: $\quad M_{1}=2.15 ; t_{\mathrm{at}}=-60^{\circ} \mathrm{C}$
Required: $\quad \mathbf{V}_{\mathrm{tt}}$ in knota
Solution: Une Page 4 of Chatt 8.4. For the given comditions $V_{t t}=1223$, knots
TRUE SPEED,

120

ATMOSPHERIC AIR TEMPERATURE, \quad a ($\left.{ }^{\circ} \mathrm{C}\right)$

CHART 8.5

(See paragraph 2.5.2)

MACH NUMBER, M versus CALIBRATED AIRSPEED, V_{c} for PRESSURE ALTITUDE, $H_{r}=$ CONSTANT

and

MACH NUMBER, M versus CALIBRATED AIRSPEED, V_{c} for STANDARD DAY TRUE SPEED, $V_{t s}=$ CONSTANT

ALSO

INDICATED MACH NUMBER CORRECTED FOR INSTRUMENT ERROR, $M_{i c}$ versus INDICATED AIRSPEED CORRECTED FOR INSTRUMENT ERROR, $V_{i c}$ for INDICATED PRESSURE ALTITUDE CORRECTED FOR INSTRUMENT ERROR, $H_{i c}=$ CONSTANT

Given: $\quad H_{c}$ and $V_{t s}$
1 (a) $\frac{\mathrm{T}_{\mathrm{ae}}}{\mathrm{T}_{\mathrm{aSL}}}=1-6.87535 \times 10^{-6} \mathrm{H}_{\mathrm{c}}$

$$
H_{c} \leq 36,089.24 \text { feet }
$$

(b) $\frac{\mathrm{T}_{\mathrm{as}}}{\mathrm{T}_{\mathrm{aSL}}}=0.751874$

$$
H_{c} \geqslant 36,089.24 \text { feet }
$$

$$
2 \frac{a_{8}}{a_{S L}}=\left(\frac{T_{a s}}{T_{a S L}}\right)^{1 / 2}
$$

$$
3 M=\frac{V_{t s}}{a_{s}}=\frac{V_{t B}}{a_{S L}} / \frac{a_{s}}{a_{S L}}
$$

4
(a) $\frac{q_{c}}{P_{a}}=\left[\left(1+0.2 M^{2}\right)^{3.5}-1\right] \quad M \leqslant 1.00$
(b) $\frac{q_{c}}{P_{a}}=\left[\frac{\left(166.921 M^{7}\right)}{\left(7 M^{2}-1\right)^{2.5}-1}\right] \quad M \geq 1.00$
$5 \quad \frac{q_{c}}{P_{a S L}}=\frac{q_{c}}{P_{a}} \quad \frac{P_{a}}{P_{a S L}}$
6 (a) $\frac{P_{a}}{P_{a S L}}=\left(\frac{T_{a E}}{T_{a S L}}\right)$

$$
H_{c} \leqslant 36,089.24 \text { feet }
$$

(b) $\frac{P_{a}}{P_{a S L}}=0.223358 \mathrm{e}^{-4.80634 \times 10^{-5}\left(H_{c}-36,089.24\right)}$
$H_{c} \geq 36,089.24$ feet

7
(a) $\frac{v_{c}}{{ }^{a_{S L}}}=2.23607 \sqrt{\left(\frac{q_{c}}{P_{a S L}}+1\right)^{2 / 7}}-1 \quad \frac{q_{c}}{P_{a S L}} \leq 0.89293$
(b) $\left.\frac{V_{c}}{a_{S L}}=0.881284 \sqrt{\left(\frac{q_{c}}{P_{a S L}}\right.}+1\right)\left[1-\frac{1}{7\left(\frac{V_{c}}{a_{S L}}\right)^{2}}\right]^{\frac{5}{2}} \underset{\frac{q_{c}}{P_{a S L}}}{q^{\prime}} 0.89293$
$8 \quad V_{c}=\left(\frac{v_{c}}{a_{S L}}\right) a_{S L}$
where $a_{S L}=661.48$ knot.

Example:

1. Given: $\quad M=1.60 ; V_{c}=400 \mathrm{knots}$

Required: H_{c} and $V_{t a}$
Solution: Use Page 21 of Chart 8.5. $H_{c}=52,850$ feet; $V_{t g}=917.2$ knots
2. Given: $\quad \mathrm{M}=1.20 ; \mathrm{H}_{\mathbf{c}}=50,000$

Required: $\quad V_{c}$ and $V_{t s}$
Solution: Use Page 12 of Chart 8.5. $\quad V_{c}=308.7$ knots:
$\mathrm{V}_{\mathrm{tg}}=688.1 \mathrm{knots}$
3. Given: $\quad H_{c}=35,000$ feet; $V_{c}=200$ knots

Required: M and $V_{t s}$
Solution: Use Page 5 of Chart 8.5. $\quad M=0.6023 ; V_{t s}=347.1$ knots
4. Given: $\quad M_{i c}=1.60 ; V_{i c}=400$ knots

Required: $H_{i c}$
Solution: Uae Page 21 of Chart 8.5. $\mathrm{H}_{\mathrm{ic}}=52,850$ feet
5. Given: $\quad M_{i c}=1.20 ; H_{i c}=50,000$ feet

Required: $\quad V_{i c}$
Solution: Use Page 12 of Chart 8.5. $\quad V_{i c}=308.7 \mathrm{knots}$
6. Given: $\quad H_{i c}=35,000$ feet, $V_{i c}=200 \mathrm{knots}$

Required: $M_{i c}$
Solution: Use Page 5 of Chart 8.5. $\mathbf{M}_{\text {ic }}=0.6023$

CHART 8.5

 CALIBRATED AIRSPEED, V_{c} (Knots)
0.98
ATA
0.94
0.92
0.90
$H \perp \perp+1 \times+ \pm \times 1$
.

2

(47

1.42

1.40

2

1.48

（2）

\square
\qquad
\qquad
\qquad
\qquad

\square
 1执品
 \qquad
\qquad
\squaret＇
Hit22$\frac{14}{4}$
\square
： P品Eindi4，
荡品41号解：
\square
\square
\square茟茟419T器
477
苗开
1.28

1.68

1.66


```
\Sigma
```


MACH UMEER,

1.74

共
1.72
1.70
1.68

$\sum 1.64$

1.74

. 1.72
保 414

1.70

1.68

$\geq 1.6 t$

詩

0
4

1.98
1.96

6

 \＃ ＂
浆等

H F
T \＃ H
Y等

＝ ： \＃
㭟 \＃
 F

1
1

． － －

坓
 य

1.98

1.96

1.94

1.92
 ,
解 , , ,

 W

940	9060	980	1000	1020	1040	1060	1080	1100

尾

H
1:

2.18

2.00

気
 －2 2

2． 18

 ：

 2）
康 ruep ب

支车

14）
 （1）

H2 1

艮

费品履 1品罗弗

进

华尼 （1）
 4 य 1～1 品品
弗䎴共䩤

 480

500
520
2.46 2
2
2连 $\frac{4}{4}$

2． 40

2． 34

E荡

2． 28

弗品隹
辟尼

 660

680 700 720 740

760
780
800
820
CALIBRATED AIRSPEED， V_{c}（Knots）

$$
2.42
$$

2.48

2. 40

$+$

2.72

 2.70

 ：：：： ：
 P4q4； ：

出中：

中品保

 G2，

2．58

 Hau 1

（2）

\qquad

[^2]泡，
何

2.98

2.94
艮

弗弗车促

韦履
䎴

品䎴

 720

740
760
780
800
820
840
860
880

（5）

2促He，靕䍝冓請呈，
2.78 \％
 3吅
8.6 THE CORRECTION OF ALTIMETER AND/OR AIRSPEED INDICATOR READINGS FOR FRESSURE LAG ERROR

CHART 8.61
(See paragraph 4.2.1)
LAG CONSTANT RATIO, ${ }^{\lambda} H_{i c} / \lambda_{S L}$ versus iNDICATED PRESSURE ALTITUDE CORRECTED FOR INSTRUMENT ERROR, Hic (Thousands of Feet) for INDICATED AIRSPEED CORRECTED FOR INSTRUMENT ERROR, $\mathrm{V}_{\mathrm{ic}}($ Kncts $)=$ CONSTANT

$$
\frac{\lambda_{H_{i c}}}{\lambda_{S L}}=\frac{\mu_{H_{i c}}}{\mu_{S L}} \frac{P_{\mathrm{aSL}}}{P_{\mathrm{s}}+q_{\mathrm{cic}}}
$$

CHART 8.62
(See paragraph 4.2.1)

LAG CONSTANT TEMPERATURE CORRECTION FACTOR, $\lambda / \lambda^{\lambda} H_{i c}$ versus INDICATED PRESSURE ALTITUDE CORRECTED FOR INSTRUMENT ERROR, $H_{i c}$ (Thousands of Feet) for TEST DAYATMOSPHERIC TEMPERATURE, $t_{\text {at }}\left({ }^{\circ} \mathrm{C}\right)=$ CONSTANT

$$
\frac{\lambda}{\lambda_{H_{i c}}}=\frac{T_{a t}}{T_{a s}}
$$

where T_{as} corresponds to H_{ic}.

CHART 8.63

(See paragraph 4.2.2)

AIRSPEED INDICATOR LAG FACTOR, $F_{1}\left(H_{i c}, V_{i c}\right)$ versus INDICATED AIRSPEED CORRECTED FOR INSTRUMENT ERROR, $V_{i c}$ (Knots) for INDICATED PRESSURE ALTITUDE CORRECTED FOR INSTRUMENT ERROR, $H_{i c}($ Feet $)=$ CONSTANT, and $\mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}$ in feet per minute.

$$
\begin{gathered}
F_{1}\left(H_{i c}, V_{i c}\right)=\frac{G \sigma_{s}}{2.84869 V_{i c}\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{2.5}} \quad V_{i c} \leq a_{S L} \\
F_{1}\left(H_{i c}, V_{i c}\right)=\quad G \rho_{B} \frac{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]^{3.5}}{3738.11\left(\frac{V_{i c}}{a_{S L}}\right)^{6}\left[2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]} \quad V_{i c} \geq a_{S L}
\end{gathered}
$$

where σ_{s} and P_{s} correspond to $H_{i c}$

ALTIMETER

$$
\Delta H_{i c l}=\frac{\lambda_{s}}{60} \frac{\dot{d} H_{i c}}{d t}
$$

where

$$
\lambda_{s}=\lambda_{\mathrm{BSL}} \frac{\lambda_{\mathrm{s}} H_{i c}}{\lambda_{\mathrm{BSL}}} \frac{\lambda_{\mathrm{B}}}{\lambda_{\mathrm{B}} H_{\mathrm{ic}}}
$$

and $d H_{i c} / d t=$ feet/minute
$\lambda_{\mathrm{aSL}}=s e c o n d s$
$\lambda_{\mathbf{B}} \mathrm{H}_{\mathrm{ic}} / \lambda_{\mathrm{BSL}}$ from Chart 8.61 for $H_{\text {ic }}, V_{\text {ic }}=$ STATIC
$\lambda_{s} / \lambda_{s} H_{i c}$ from Chart 8.62 for $H_{i c}, t_{a t}\left({ }^{\circ} \mathrm{C}\right)$

AIRSPEED INDICA TOR

$$
\Delta V_{i c l}=\lambda_{t} \frac{d V_{i c}}{d t}+\frac{\left(\lambda_{s}-\lambda_{t}\right)}{60} F_{1}\left(H_{i c}, V_{i c}\right) \frac{d H_{i c}}{d t} \quad 4.43
$$

where

$$
\begin{align*}
& \lambda_{s}=\lambda_{s S L} \frac{\lambda_{\mathrm{B}} H_{\mathrm{ic}}}{\lambda_{\mathrm{sSL}}} \frac{\lambda_{\mathrm{s}}}{\lambda_{\mathrm{s}} H_{\mathrm{ic}}} \\
& \lambda_{\mathrm{t}}=\lambda_{\mathrm{tSL}} \frac{\lambda_{\mathrm{t}} H_{\mathrm{ic}}}{\lambda_{\mathrm{tSL}}} \frac{\lambda_{\mathrm{t}}}{\lambda_{\mathrm{t}} H_{\mathrm{ic}}}
\end{align*}
$$

and
$d V_{i c} / d t=k n o t s / s e c o n d$
$d H_{i c} / d t=f e e t /$ minute
$\lambda_{\text {iSL }}$ and $\lambda_{s S L}=$ seconds
$\lambda_{B H_{i c}} / \lambda_{B S L}$ from Chart 8.61 for $H_{i c}, V_{i c}=$ STATIC
$\lambda_{t H_{i c}} / \lambda_{t S L}$ from Chart 8.61 for $H_{i c}, V_{i c}$
$\lambda / \lambda H_{i c}$ from Chart 8.62 for $H_{i c}$, $t_{\text {at }}\left({ }^{\circ} \mathrm{C}\right)$
$F_{1}\left(H_{i c}, V_{i c}\right)$ from Chart 8.63 for $H_{i c}, V_{i c}$
Example:
Given:

$$
\begin{aligned}
& \lambda_{s S L}=0.60 ; \lambda_{\mathrm{tSL}}=0.10 \\
& \mathrm{~V}_{\mathrm{ic}}=800 \text { knots; } H_{\mathrm{ic}}=30,000 \text { feet; } \mathrm{t}_{\mathrm{at}}=-30^{\circ} \mathrm{C} \\
& \frac{d V_{i c}}{d t}=3 \text { knots/second; } \frac{d H_{i c}}{d t}=10,000 \text { feet } / \mathrm{minute}
\end{aligned}
$$

Required: $\quad \Delta H_{i c l}$ and $\Delta V_{i c l}$
Solution: From Chart 8.61 for $H_{i c}=30,000$ feet, $V_{i c}=$ STATIC

$$
\frac{\lambda_{\mathrm{sH}} \mathrm{ic}}{\lambda_{\mathrm{sSL}}}=2.80
$$

From Chart 8.61 for $H_{i c}=30,000$ feet, $V_{i c}=800$ knots

$$
\frac{\lambda_{\mathrm{tH}}^{\mathrm{ic}}}{}=0.50
$$

From Chart 8.62 for $H_{i c}=30,000$ feet $t_{\text {at }}=-30^{\circ} \mathrm{C}$

$$
\frac{\lambda}{\lambda_{H_{i c}}}=1.063
$$

From equation 4.21

$$
\lambda_{\mathrm{s}}=0.60(2.80)(1.063)=1.786
$$

From equation 4.40

$$
\lambda_{t}=0.10(0.50)(1.063)=0.053
$$

From equation 4.24 for $\mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}=10,000 \mathrm{feet} / \mathrm{minute}$

$$
\Delta H_{i c l}=\frac{1.786}{60}(10,000)=298 \mathrm{feet}
$$

From Chart 8.63 for $H_{i c}=30,000$ feet, $V_{i c}=800$ knors

$$
\mathbf{F}_{1}\left(\mathrm{H}_{\mathrm{ic}}, \mathrm{~V}_{\mathrm{ic}}\right)=0.0030
$$

From equation 4.43 for $d V_{i c} / \mathrm{dt}=3 \mathrm{knots} / \mathrm{sec}$ ond,

$$
\mathrm{dH}_{\mathrm{ic}} / \mathrm{dt}=10,000 \mathrm{feet} / \mathrm{minute}
$$

$$
\begin{aligned}
\Delta V_{\mathrm{icl}} & =0.053(3)+\frac{(1.786-0.053)}{60}(.0030) 10,000 \\
& =0.159+0.866=1.025 \mathrm{knot}
\end{aligned}
$$

INDICATED PRESSURE ALTITUDE, Hic (Thoumande of Feot)
1.16

CHART 8.7
(See paragraph 5.3.1)

INDICATED PRESSURE ALTITUDE CORRECTED for INSTRUMENT ERROR, $H_{i c}$ (Thousands of Feet) versus $\Delta P_{p} / \Delta H_{p c}$, ("Hg/Feet)for $\Delta H_{p c}($ Feet $)=$ CONSTANT

$$
\frac{\Delta P_{p}}{\Delta H_{p c}}=0.0010813 \sigma_{s}, \quad " H g / \text { feet }
$$

where σ_{s} is measured at $\left(H_{i c}+\frac{\Delta H}{2}\right)$

Example:
Given: $\quad H_{i c}=35,000$ feet; $\Delta H_{p c}=+2000$ feet
Required: $\quad \Delta P_{P}$ in $" H g$
Solution: Use Page 2 of Chart 8.7. For the given conditions,

$$
\begin{aligned}
& \frac{\Delta P_{P}}{\Delta H_{p c}}=0.000322 \mathrm{Hg} / \text { feet } \\
& \Delta P_{p}=\frac{\Delta P_{p}}{\Delta H_{p c}} \Delta H_{p c}=+0.644 \mathrm{HHg}
\end{aligned}
$$

 .6

 E

$$
\Delta P_{p} / \Delta H_{\mathrm{pc}}\left({ }^{\prime} \mathrm{Hg} / \text { Feet }\right)
$$

INDICATED PRESSURE ALTITUDE. Hic (Thousands of Feet)

56
52
48
44
32

CHART 8.7
$\Delta P_{p} / \Delta H_{p c}\left({ }^{\prime} \mathrm{Hg} /\right.$ Feet $)$

CHART 8.8
(See paragraph 5.3.1)

INDICATED PRESSURE ALTITUDE CORRECTED for INSTRUMENT ERROR, $H_{i c}$ (Thousands of Feet) versus $\Delta P_{p} / \Delta H_{p C}$, ("Hg/Feet) for $\Delta P_{P^{\prime}}\left({ }^{(" H g)}=\right.$ CONSTANT

$$
\frac{\Delta P_{p}}{\Delta H_{p c}}=0.0010813 \sigma_{s} \cdot \quad " \mathrm{Hg} / \text { feet }
$$

where σ_{s} is measured at $\left(H_{i c}+\frac{\Delta H_{p c}}{2}\right)$
Example:
Given: $\quad H_{i c}=52,000$ feet; $\Delta P_{p}=-0.50 \mathrm{Hg}$
Required: $\quad \Delta H_{p c}$ in feet
Solution: Use Page 2 of Chart 8.8. For the given conditions,

$$
\begin{aligned}
& \frac{\Delta P_{P}}{\Delta H_{P C}}=0.000162 \\
& \Delta H_{p c}
\end{aligned}=\frac{\Delta P_{p}}{\left(\frac{\Delta P_{P}}{\Delta H_{p C}}\right)}=3090 \text { feet }
$$

CHART 8.9

(Se paragraph 5.3.2)

INDICATED AIRSPEED CORRECTED for INSTRUMENT ERROR, $V_{i c}$ (Knots) versus $\Delta P_{p} / \Delta V_{p c}(" H g / K n o t)$ for $\Delta V_{p c}($ Knots $)=$ CONSTANT
where $P_{\mathbf{a}_{S L}}=29.92126{ }^{\prime \prime} \mathrm{Hg}{ }^{a_{S L}}=661.48 \mathrm{knots}$
Example:
Given: $\quad V_{i c}=300$ knots; $\Delta V_{p c}=-20$ knots
Required: $\quad \Delta P_{P}$ in ${ }^{\prime} H_{g}$
Solution: For the given conditions,

$$
\frac{\Delta P_{P}}{\Delta V_{P C}}=\frac{0.0305}{\Delta P} \text { " } \mathrm{Hg} / \mathrm{knot}
$$

$$
\Delta P_{p}=\frac{\Delta P_{p}}{\Delta V_{p c}} \quad \Delta V_{p c}=-0.610 \mathrm{Hgg}
$$

$$
\begin{aligned}
& \frac{\Delta P_{p}}{\Delta V_{P C}}=\frac{1.4 P_{a S L}}{{ }^{a_{S L}}}\left(\frac{V_{i c}}{a_{S L}}\right)\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{2.5} \quad V_{i c} \leq{ }^{a_{S L}} \\
& +\frac{0.7 P_{a S L}}{{ }^{\mathbf{a}} \mathbf{S L}}\left[1+0.2\left(\frac{\mathrm{~V}_{\mathrm{ic}}}{\mathrm{a}_{\mathrm{SL}}}\right)^{2}\right]^{1.5}\left[1+1.2\left(\frac{\mathrm{~V}_{\mathrm{ic}}}{\mathbf{a}_{S L}}\right)^{2}\right] \frac{\Delta V_{\mathrm{PC}}}{{ }^{{ }^{\mathbf{a}} \mathrm{SL}}} \\
& \frac{\Delta P_{p}}{\Delta V_{p c}}=52.854\left(\frac{V_{i c}}{a_{S L}}\right)^{6} \frac{\left[2\left(\frac{V_{i c}}{\mathrm{a}}\right)^{2}-1\right]}{\left[7\left(\frac{V_{i c}}{{ }_{\mathrm{a}}^{\mathrm{SL}}}\right)^{2}-1\right]^{3.5}} \\
& \mathbf{V}_{\mathrm{ic}} \geq \mathbf{a}_{\mathbf{S L}} \\
& +52.854\left(\frac{V_{i c}}{a_{S L}}\right)^{5} \frac{\left[7\left(\frac{V_{i C}}{a_{S L}}\right)^{4}-4.5\left(\frac{V_{i c}}{a_{S L}}\right)^{2}+3\right]}{\left[7\left(\frac{V_{i C}}{a_{S L}}\right)^{2}-1\right]^{4.5}} \frac{\Delta V_{P C}}{{ }^{2} S L}
\end{aligned}
$$

CHART 8.9

CHART 8. 10

(See paragraph 5.3.2)

INDICATED AIRSPEED CORRECTED FOR INSTRUMENT ERROR,
$V_{i c}$ (Knots) versus $\Delta P_{p} / \Delta V_{p c}\left({ }^{\prime} \mathrm{Hg} / \mathrm{Knot}\right)$ for $\Delta P_{p}\left({ }^{\prime} \mathrm{H}_{\mathrm{g}}\right)=$ CONSTANT

$$
\begin{aligned}
& \frac{\Delta P_{p}}{\Delta V_{p C}}=\frac{1.4 P_{a} S_{S L}}{a_{S L}}\left(\frac{V_{i c}}{a_{S L}}\right)\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{2.5} \quad V_{i c} \leq a_{S L} \\
& +\frac{0.7 \mathrm{P}_{\mathrm{a}_{\mathrm{SL}}}}{\mathrm{a}_{\mathrm{SL}}}\left[1+0.2\left(\frac{\mathrm{v}_{\mathrm{ic}}}{\mathrm{a}_{\mathrm{SL}}}\right)^{2}\right]^{1.5}\left[1+1.2\left(\frac{\mathrm{v}_{\mathrm{ic}}}{\mathrm{a}_{\mathrm{SL}}}\right)^{2}\right] \frac{\Delta V_{\mathrm{PC}}}{\mathrm{a}_{\mathrm{SL}}} \\
& \frac{\Delta P_{P}}{\Delta V_{P C}}=52.854\left(\frac{V_{i c}}{{ }^{2} S L}\right)^{6} \quad \frac{\left[2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]}{\left[7\left(\frac{V_{i C}}{a_{S L}}\right)^{2}-1\right]^{3.5}} \quad \quad V_{i C} \geq a_{S L} \\
& +52.854\left(\frac{V_{i c}}{\left.{ }^{a_{S L}}\right)^{5}} \frac{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{4}-4.5\left(\frac{V_{i c}}{a_{S L}}\right)^{2}+3\right]}{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]^{4.5}} \frac{\Delta V_{p c}}{{ }^{2}{ }_{S L}}\right. \\
& \text { Where } P_{\text {aSL }}=29.92126{ }^{\prime H g}{ }^{a_{S L}}=661.48 \mathrm{knots}
\end{aligned}
$$

Example:

Given: $\quad V_{i c}=550$ knots: $\Delta P_{p}=+2.0{ }^{\prime \prime} \mathrm{Hg}$
Required: $\Delta V_{p c}$ in knots
Solution: For the given conditions,

$$
\begin{aligned}
& \frac{\Delta P_{p}}{\Delta V_{p c}}=0.0763 \\
& \Delta V_{p c}=\left(\frac{\Delta P_{P} / \Delta P_{p}}{\Delta V_{p c}}\right)=26.2 \mathrm{knot}
\end{aligned}
$$

CHART 8.10

AIRSPEED POSITION ERROR CORRECTION, $\Delta V_{p c}$ (Knots) versus INDICATED AIRSPEED CORRECTED FOR INSTRUMENT ERROR, $\mathbf{V}_{\text {ic }}$ (Knots) for POSITION ERROR PRESSURE COEFFICIENT, $\Delta \mathbf{P}_{\mathbf{p}} / \mathbf{q}_{\mathrm{cic}}$

For $\mathrm{V}_{\mathrm{ic}} \leq \mathrm{a}_{\mathrm{SL}}$,

For $\mathbf{V}_{\mathbf{i c}}{ }^{\geq} \mathbf{a}_{\mathbf{S L}}$,

where ${ }^{\text {a }}=661.48$ knote

Example:
Given: $\quad V_{i c}=700$ knotes $\Delta V_{p c}=-20$ knots
Required: $\quad \Delta \mathbf{P}_{\mathbf{p}} / \mathbf{q}_{\text {cic }}$
Solution: Use Page 2 of Chart 8.11. For the given conditions, $\Delta P_{p} / q_{c i c}=-0.070$

CHART 8.11

布

井 \＃曲

弗

 \＃

0

u

（Knots） \＃

弗-20
\＃\＃\＃\＃ 世号 －
保

 （1）

弗 $\boldsymbol{\sim}$

我 （1）

莪

INDICATED AIRSPEED，$V_{\text {ic }}$（Knote）
CHART 8.11

CHART 8.12
(See paragraph 5.3.4)

RATIO OF ALTIMETER TO AIRSPEED INDICATOR POSITION ERROR CORRECTIONS, $\Delta H_{p c} / \Delta V_{p c}(F e e t / K n o t s)$ versus INDICATED AIRSPEED CORRECTED FOR INSTRUMENT ERROR, $V_{i c}$ (Knote) for INDICATED PRESSURE ALTITUDE CORRECTED FOR INSTRUMENT ERROR, H H_{ic} (Feet) = CONSTANT

$$
\begin{array}{ll}
\frac{\Delta H_{p c}}{\Delta V_{p c}}=\frac{58.566}{\sigma_{s}}\left(\frac{V_{i c}}{a_{S L}}\right)\left[1+0.4\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{2.5} & V_{i c} \leq a_{S L} \\
\frac{\Delta H_{p c}}{\Delta V_{p c}}=\frac{48,880}{\sigma_{s}} & \left(\frac{V_{i c}}{a_{S L}}\right)^{6}
\end{array}
$$

where σ_{s} is measured at $H_{i c}$ and ${ }^{a}{ }_{S L}=661.48 \mathrm{knots}$
Note: This curve is valid for small errors only, (say $\Delta H_{p c}<1000$ feet or $\Delta V_{p c}<10$ knots). Chart 8.13 should be used for larger errors.

Example:
Given: $\quad H_{i c}=20,000$ feet; $V_{i c}=600 \mathrm{knots} ; \Delta H_{p c}=2000$ feet
Required: $\quad \Delta V_{p c}$ in knots
Solution: Use Page lof Chart 8.12. For the given conditions,
$\Delta H_{p c} / \Delta V_{p c}=147$ feet $/ \mathrm{knots}$
$\Delta V_{p c}=\frac{\Delta H_{p c}}{\Delta H_{p c} / \Delta V_{p c}}=13.6$ knots

Note: The exact solution is found from Chart 8.13 to be 13.0 knots.

\because

CHART 8.13
(See paragraph 5.3.4)

AIRSPEED POSITION ERROR CGKRECTION, $\Delta V_{p c}$ (Knots) versus STATIC PRESSURE ERROR, $\Delta P_{p}\left(" H_{j}\right)$ for INDICATED AIRSPEED CORRECTED FOR INSTRUMENT ERROR, $V_{i c}$ (Knots) = CONSTANT
and

ALTIMETER POSITION ERROR CORRECTION, $\triangle H_{p C}$ (Feet) versus STATIC PRESSURE ERROR, $\Delta P_{p}(" H g)$ for INDICATED PRESSUREALTITUDE CORRECTED FOR INSTRUMENT ERROR, $H_{i c}$ (Feet) = CONSTANT

AI.SO

AIRSPEED POSITION ERROR CORRECTION, $\Delta V_{p c}$ (Knots) versus ALTIMETER POSITION ERROR CORRECTION, $\Delta H_{p c}$ (Feet) for INDICATED AIRSPEED CORRECTED FGR INSTRUMENT ERROR, Vic (Knots) = CONSTANT and INDICATED PRESSURE ALTITUDE CORRECTED FOR INSTRUMENT ERROR, $H_{i c}($ Feet $)=$ CONSTANT

$$
\Delta P_{p}=0.0010813 \sigma_{s} \Delta H_{p c}
$$

for $\mathrm{V}_{\mathrm{ic}} \leq \mathrm{a}_{\mathrm{SL}}$

$$
\begin{aligned}
& =1.4 P_{a_{S L}}\left(\frac{v_{i c}}{a_{S L}}\right)\left[1+0.2\left(\frac{v_{i c}}{a_{S L}}\right)^{2}\right]^{2.5} \frac{\Delta \mathrm{~V}_{\mathrm{Pc}}}{{ }^{a_{S L}}} \\
& +0.7 \mathrm{P}_{\mathrm{aSL}}\left[1+0.2\left(\frac{v_{i c}}{a_{S L}}\right)^{2}\right]^{1.5}\left[1+1.2\left(\frac{v_{i c}}{a_{S L}}\right)^{2}\right]\left(\frac{\Delta V_{\mathrm{Pc}}}{a_{S L}}\right)^{2}
\end{aligned}
$$

for $\mathbf{V}_{\text {ic }} \geq \mathbf{a}_{\mathbf{S L}}$

$$
\begin{aligned}
& =7 K P_{a_{S L}}\left(\frac{V_{i c}}{a_{S L}}\right)^{6} \frac{\left[2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]}{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]^{3.5}} \frac{\Delta V_{p c}}{a_{S L}} \\
& +7 K P_{a_{S L}}\left(\frac{V_{i c}}{a_{S L}}\right)^{5} \frac{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{4}-4.5\left(\frac{V_{i c}}{a_{S L}}\right)^{2}+3\right]\left(\frac{\Delta V_{P C}}{a_{S L}}\right)^{2}}{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]^{4.5}}
\end{aligned}
$$

where $K=166.921_{i} P_{\mathrm{a}_{\mathrm{SL}}}=29.92126 \mathrm{Hg}_{\mathrm{Hg}}{ }^{a_{S L}}=661.48 \mathrm{knots}$ and σ_{ε} is measured at $H_{i c}+\frac{\Delta H_{P C}}{2}$

Example:

Given: $\quad H_{i c}=35,000$ feet $\quad \Delta H_{p c}=+2000$ feet
Required: ΔP_{P} in $" \mathbf{H g}$
Solution: Use Page 3 of Chart 8.13 for positive errors.
For the given conditiona,

$$
\Delta P_{P}=0.645{ }^{\prime} \mathrm{Hg}
$$

Example 2:
Given: $\quad V_{i c}=300$ knots; $\Delta V_{p c}=-20$ knote
Required: $\quad \Delta P_{p}$ in ${ }^{\mathbf{H g}}$
Solution: Uee Page 4 of Chart 8.13 for negative errore
For the given conditione

$$
\Delta P_{P}=-0.610 " \mathrm{Hg}
$$

Example 3:
Given: $\quad V_{i c}=400$ knots; $H_{i c}=30,000$ feet; $\Delta V_{p c}=+20$ knots
Required: $\quad \Delta H_{p c}$ infeet
Solution: Use Page 3 of Chart 8.13 for positive errors.
For the given conditions,
$\Delta H_{p c}=+2440 \mathrm{feet}$
Note: The approximate solution is found from Chart 8.12 to be $\Delta H_{p c}=2260$ feet .

 Tu. Mu. c. . . 4 THu| Pa Me. The Tueace -4 $-\operatorname{Hem}_{4}$ Ther mather
 MHex

 4um

 Hemplemen
 M1 Trup．啡韭

唯

 ，，ب2层

CHART 8.14
(See paragraph 5.3.5)

INDICATED MACH NUMBER CORRECTED FOR INSTRUMENT ERROR, $M_{i c}$ versue RATIO OF MACH METER TO ALTIMETER POSITION ERROR
 CORRECTED FOR INSTRUMENT ERROR, $H_{i c}(F e e t)=$ CONSTANT

$$
\begin{array}{ll}
\frac{\Delta M_{p c}}{\Delta H_{p c}}=0.007438 \frac{\left(1+0.2 M_{i c}^{2}\right)}{T_{a \varepsilon} M_{i c}} & M_{i c} \leq 1.00 \\
\frac{\Delta M_{p c}}{\Delta H_{p c}}=0.001488 \frac{M_{i c}}{T_{\mathrm{as}}} \frac{\left(7 M_{i c}^{2}-1\right)}{\left(2 M_{i c}^{2}-1\right)} & M_{i c} \geq 1.00
\end{array}
$$

where $T_{\text {as }}$ is measured at $H_{i c}$.
Note: Thie curve is valid for amall errors only, (asy $\Delta H_{p c}<1000$ feet or $\Delta M_{p c}<0.04$). Chart 8.15 should be used for larger errora.

Example:

Given: $\quad M_{i c}=2.30 ; H_{i c}=46,000$ feet; $\Delta H_{p c}=-800$ feet
Required: $\Delta M_{p c}$
Solution: Use Page 3 of Chart 8.14. For the given conditions,

$$
\begin{aligned}
& \frac{\Delta M_{p c}}{\Delta H_{p c}}=5.94 \times 10^{-5} \frac{1}{F e \mathrm{et}} \\
& \Delta M_{p c}=\frac{\Delta M_{p c}}{\Delta H_{p c}} \quad \Delta H_{p c}=0.0475
\end{aligned}
$$

Note: The exact solution is found from Chart 8.15 to te

$$
\Delta M_{p c}=-0.0470
$$

 71 7 IT Tip 5 P7 : 1 ? + TH: T 1 . T ? 4 $\left[\begin{array}{c}0 \\ \vdots \\ \vdots \\ \hdashline \\ \hdashline\end{array}\right\}$

 $\left\{\begin{array}{c}\text { 1t } \\ \vdots \\ \vdots \\ i \\ \vdots \\ \vdots\end{array}\right.$

E

1,0
1.0
0.9

-

INDICATED MACH NUMBER，Mic

2

INDICATED MACH NUMBER，Mic

1.7

 $\square \mathrm{Q} \mathrm{Q} \mathrm{Q}$
 A 1.6
1.5 14世 तिए＋ －a
$:$
1.3
5 بिक － $\mathrm{L}-\mathrm{Q} \boldsymbol{- 1}$
 $\xrightarrow[\square]{\square}$
世

\＆ 1 $\stackrel{+}{6}$ प्रि女ி － ＋世＋ －$-\infty$ \％ \qquad
\qquad
\qquad
\qquad
Ca，
\qquad
,

$$
\square
$$

$$
5
$$ －

ب－\quad．PG
\qquad
\square
\qquad
\qquad
\qquad

$$
\left(\Delta M_{\mathrm{pc}} / \Delta H_{\mathrm{pc}}\right) \times 10^{-5} \sim\left(10^{5} / \text { Feet }\right)
$$

INDICATED MACH NUMBER, Mic

$$
\begin{aligned}
& 2.5 \\
& 2.4
\end{aligned}
$$

n

∞
 \qquad
${ }^{5}$ 61
3

(:1)

| \vdots |
| :---: | :---: |
| \vdots |
| \vdots |

a
\vdots
\vdots
\vdots
10:

CHART 8.15
(See paragraph 5.3.5)

MACH METER POSITION ERROR CORRECTION, $\triangle M_{p c}$ versus RATIO OF static pressure error to indicated static pressure, $\Delta P_{p} / P_{s}$ for INDICATED MACH NUMBER CORRECTED FOR INSTRUMENT ERROR, $M_{i c}=$ CONSTANT
and

ALTIMETER POSITION ERROR CORRECTION, $\Delta H_{p c}$ (Feet) versus RATIO OF STATIC PRESSURE ERROR TO INDICATED STATIC PRESSURE, $\Delta P_{p} / P_{s}$ for INDICATED PRESSURE ALTITUDE CORRECTED FOR INSTRUMENT ERROR, $H_{i c}=$ CONSTANT

A LSO

MACH METER POSITION ERROR CORRECTION, $\Delta M_{p c}$ versus ALTIMETER POSITION ERROR CORRECTION, $\triangle H_{p c}$ (Feet) for INDICATED MACH NUMBER CORRECTED FOR INSTRUMENT ERROR, M $M_{\text {ic }}=$ CONSTANT and INDICATED PRESSURE ALTITUDE CORRECTED FOR INSTRUMENT ERROR, $H_{i c}($ Feet $)=$ CONSTANT

$$
\begin{aligned}
& \frac{\Delta P_{P}}{P_{B}}=0.0010813 \quad \sigma_{B} / P_{B} \quad \Delta H_{p c} \\
& =\frac{1.4 M_{i c} \Delta M_{p c}}{\left(1+0.2 M_{i c}{ }^{2}\right)}+\frac{0.7\left(1-1.6 M_{i c}{ }^{2}\right) \Delta M_{p c}}{\left(1+0.2 M_{i c}{ }^{2}\right)^{2}} \quad M_{i c} \leq 1.00 \\
& =\frac{7\left(2 M_{i c}^{2}-1\right) \Delta M_{p c}}{M_{i c}\left(7 M_{i c}^{2}-1\right)}-\frac{7\left(21 \lambda_{i c}{ }^{4}-23.5 M_{i c}{ }^{2}+4\right) \Delta M_{p c}{ }^{2}}{M_{i c}{ }^{2}\left(7 M_{i c}{ }^{2}-1\right)^{2}} \\
& M_{i c} \geq 1.00
\end{aligned}
$$

where $P_{\text {g }}$ is measured at $H_{i c}$ and σ_{B} is measured at $H_{i c}+\frac{\Delta H_{p c}}{2}$ Example:

Given: $\quad M_{i c}=1.00, H_{i c}=72,000$ feet; $\angle . H_{p c}=2400$ feet
Required: $\quad \Delta M_{p c}$
Solution: Use Page 5 of Chart 8.15 fur rositive errora,
$\Delta M_{p c}=0.0968$
Note: The approximate solution is found from Chart 8.14 to be $\Delta M_{p c}=0.0486$

Hymer \square M．
\qquad
 PMP
 H
倠品
 Humb Hu H

Mun

化

\qquad
\qquad
元
－40 \qquad

草 Bunchere

0

孔

\qquad

 Hemen en ene
 r月

 PRU． （Tu）
 P1 2
罧， 2 2 2．
 （

㥭高

共
至 \＃2，
 2nan ？ P13电 C2

CHART 8.16

(See paragraph 5.3.6)

RATIO OF MACH METER TO AIRSPEED INDICATOR POSITION ERROR CORRECTIONS, $\Delta M_{p c} / \Delta V_{p c}$ ($1 / K$ nots) versue INDICATED MACH NUMBER CORRECTED FOR INSTRUMENT ERROR, $M_{i c}$ for INDICATED PRESSURE ALTITUDE CORRECTED FOR INSTRUMENT ERROR, $H_{i c}$ (Feet) = CONSTANT
$\frac{\Delta M_{p c}}{\Delta V_{p C}}=\frac{P_{a_{S L}}}{a_{S L}} \frac{1}{P_{B}} \frac{V_{i c}}{a_{S L}}\left[1+0.2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}\right]^{2.5} \frac{\left(1+0.2 M_{i c}{ }^{2}\right)}{M_{i c}} \quad V_{i c} \leq a_{S L}$

$\frac{\Delta M_{P C}}{\Delta V_{P C}}=\frac{166.921 F^{\prime} a_{S L}}{{ }^{a_{S L}}} \frac{1}{P_{s}} \frac{\left(\frac{V_{i c}}{a_{S L}}\right)^{6}\left[2\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]}{\left[7\left(\frac{V_{i c}}{a_{S L}}\right)^{2}-1\right]^{3.5}} \frac{M_{i c}\left(7 M_{i c}{ }^{2}-1\right)}{\left(2 M_{i c}{ }^{2}-1\right)} \quad V_{i c} \geq{ }^{a_{S L}}$
where $P_{a S L}=29.92126{ }^{\prime \prime} \mathrm{Hg} ;{ }^{\mathbf{a}}{ }_{S L}=661.48$ knots and P_{s} is measured at $H_{i c}$.

Note: This curve is valid for small errors only, (say $\Delta V_{p c}<10$ knots or $\left.\Delta M_{p c}<0.04\right)$ and should not he used when the position error ie larger.

Example:
Given: $\quad M_{i c}=2.40 ; H_{i c}=60,000$ feet; $\Delta V_{p c}=2.0$ knote
Required: $\quad \Delta M_{p c}$
Solution: Use Page 3 of Chart 8.16. For the given conditions, $\frac{\Delta M_{p c}}{\Delta V_{p c}}=0.03945 \frac{1}{\text { Knots }}$
$\Delta M_{p c}^{p c}=\left(\frac{\Delta M_{p c}}{\Delta V_{p c}}\right) \Delta V_{p c}=0.0789$

Preceding page blank

The method to be used in case of larger errors is illustrated by the following example.

Given: $\quad M_{i c}=1.00 ; H_{i c}=35,000$ feet $; \Delta V_{p c}=+20$ knote
Required: $\quad \Delta M_{p c}$
Solution: \quad 1. $\quad V_{i c}=350$ knots for $M_{i c}, H_{i c}$ and Chart 8.5

$$
\begin{aligned}
& \Delta P_{p} / q_{c i c}=+0.127 \text { for } V_{i c}, \Delta V_{p c} \text { and Chart 8.11 } \\
& \Delta M_{p c}=+0.1000 \text { for } M_{i c}, \Delta P_{p} / q_{c i c} \text { and Chart } 8.18
\end{aligned}
$$

2. $V_{i c}=350$ knots for $M_{i c}, H_{i c}$ and Chart 8.5 $\Delta H_{p c}=+2510$ feet for $\Delta V_{p c}, V_{i c}, H_{i c}$ and Chart 8.13 $\Delta M_{p c}=+0.1000$ for $\Delta H_{p c}, H_{i c}, M_{i c}$ and Chart 8.15

Note: Use of the approximate Chart 8.16 gives $\Delta M_{p c}=+0.094$
 INDICATED MACH NUMBER, Mc

INDICATED MACH NUMBER, Mic
$\Delta M_{p c} / \Delta V_{p c}$ (1/Knots)
0.075
0.070
0.065
R

INDICATED MACH NUMBER, Mic
(See paragraph 5.3.7)

INDICATED MACH NUMBER CORRECTED FOR INSTRUMENT ERROR; $M_{i c}$ versue RATIO OF MACH METER POSITION ERROR CORRECTION TO POSITION ERROR PRESSURL COEFFICIENT, $\Delta M_{p c} /\left(\Delta p_{p} / q_{c i c}\right)$

$$
\begin{aligned}
& \frac{\Delta M_{F c}}{\left(\Delta P_{p} / q_{c i c}\right)}=\frac{\left(1+0.2 M_{i c}{ }^{2}\right)}{1.4 M_{i c}}\left[\left(1+0.2 M_{i c}^{2}\right)^{3.5}-1\right] \quad M_{i c} \leq 1.00 \\
& \frac{\Delta M_{p c}}{\left(\Delta P_{p} / q_{c i c}\right)}=\frac{M_{i c}\left[166.921 M_{i c} \cdot\left(7 M_{i c}^{2}-1\right)^{2.5}\right]}{7\left(7 M_{i c}^{2}-1\right)^{1.5}\left(2 M_{i c}^{2}-1\right)} M_{i c} \geq 1.00
\end{aligned}
$$

Note: This curve is valid for small errors only, (say $\Delta M_{p c}<0.04$ or $\left.\Delta P_{p} / q_{\text {cic }}<0.04\right)$. Chart 8.18 should be used for larger errors.

Example:
Given: $\quad M_{i c}=0.85 ; \Delta P_{p} / q_{c i c}=+0.10$
Required: $\quad \Delta M_{p c}$
Solution: Use Page 1 of Chart 8.17. For the given conditions,

$$
\begin{aligned}
& \Delta M_{p c} /\left(\Delta P_{p} / q_{c i c}\right)=0.58 \\
& \Delta M_{p c}=\frac{\Delta M_{p c}}{\left(\Delta P_{p} / q_{c i c}\right)}\left(\Delta p_{p} / q_{c i c}\right)=+0.058
\end{aligned}
$$

Note: The exact solution is found from Chart 8.18 to be

$$
\Delta M_{p c}=+0.0588
$$

CHAKI 8.1 \because
INDIGATED MACH NUMBER, Mic
2.3

2.
1.9

Cllarte

B
 \square
\square
\square

 4
प女, $+\square$ Q 4 ma
\square
\square
\square 4
 +

CHART 8.18
(See paragraph 5.3.7)

POSITION ERROR PRESSURE COEFFICIENT, $\Delta P_{p} / q_{c i c}$ veraus MACH METER POSITION ERROR CORRECTION, $\Delta M_{p c}$ for INDICATED MACH NUMBER CORRECTED FOR INSTRUMENT ERROR, $M_{i c}=C O N S T A N T$

$\frac{\Delta P_{p}}{q_{c i c}}=\frac{\frac{7\left(2 M_{i c}{ }^{2}-1\right)}{M_{i c}\left(7 M_{i c}{ }^{2}-1\right)} \Delta M_{p c}-\frac{7\left(21 M_{i c}{ }^{4}-23.5 M_{i c}^{2}+4\right) \Delta M_{p c}{ }^{2}}{\left.M_{i c^{2}\left(7 M_{i c}^{2}-1\right)^{2}}^{\left(7 M_{i c}^{2}-1\right)^{2.5}-1}\right]}}{\left[\frac{166.921 M_{i c}{ }^{2}}{}\right.} M_{i c} \geq 1.00$
Example:
Given: $\quad M_{i c}=1.00 ; \Delta P_{p} / q_{\text {cic }}=+0.14$
Required: $\quad \Delta M_{p c}$
Solution: Use Page 1 of Chart 8.18 for poeitive errors. For the given conditions,
$\Delta M_{p c}=+0.111$
Note: The approximate solution is found from Chart 8.17 to be $\Delta M_{p c}=+0.107$
0.18

0.16

0.14

0.12

0.10
Δp_{p} qcic

Values				
Element	Symbol	In c.gs. System	In m.k s. System	In English System
Coefficient of Viscosity of Air at Temperature TSL	$\mu_{\text {SL }}$	$1.7932 \times 10^{-4} \mathrm{gm} \mathrm{on}^{-1} \mathrm{sec}^{-1}$	$\begin{aligned} & 1.8286 \times 10^{-6} \mathrm{~kg} \mathrm{sec} \mathrm{~m}^{-2} \\ & 1.7932 \times 10^{-5}{\mathrm{kgmass}) \mathrm{m}^{-1} \mathrm{sec}^{-1}}^{2} \end{aligned}$	$3.7452 \times 1 \sigma^{7} \mathrm{lb} \mathrm{sec} \mathrm{ft}^{-2}$ $1.2050 \times 1 \sigma^{5} \mathrm{~b}$ mas s) $\mathrm{F}^{1} \mathrm{sec}^{-1}$
Standard Sea Level Specific Weight	P6LBSL	$1.20131 \mathrm{gm} \mathrm{cm}^{-2} \mathrm{sec}^{-2}$	$\begin{aligned} & 1.2250 \mathrm{~kg} \mathrm{~m}^{-3} \\ & 12013{\mathrm{kgmass}) \mathrm{m}^{-2} \mathrm{sec}^{-2}}^{2} \end{aligned}$	$\begin{aligned} & 0.076475 \mathrm{lb} \mathrm{ft}^{-3} \\ & 2.46051 \mathrm{~b}(\mathrm{mass}) \mathrm{ff}^{2} \mathrm{sec}^{-2} \end{aligned}$
Dimensional constari, the arnount of which determines the magnitude of the unit of H in terms of fundamental units of length and time	G	1	$9.80665 \mathrm{~m}^{2} \mathrm{sec}^{-2} \mathrm{~m}^{-1}$	$32.17405 \mathrm{ft}^{2} \mathrm{sec}^{-2} \mathrm{ft}^{-1}$
Gas Constant for Dry Air	R	$28704 \times 10^{6} \mathrm{~cm}^{2} \mathrm{sec}^{-2} \mathrm{~K}^{-1}$	$28704 \times 10^{2} \mathrm{~m}^{2} \mathrm{sec}^{-2} \mathrm{KK}^{-1}$	$17.165 \times 10^{2} \mathrm{ft}^{2} \mathrm{sec}^{-2} \mathrm{R}^{-1}$
Apparent Molecular Weight of Dry Air	M	$28.966 \mathrm{gm} \mathrm{mol}^{-1}$	------	------

Note: Prime quantities represent geopotential units
Example: $\mathrm{lm}^{\prime}=1$ geopotential meter
Conversion Factors
1 foot $=0.3048$ meter
pound $=0.4535923 \mathrm{kilogram}$
1 nautical mile $=6076.1033$ feet
${ }^{\bullet} \mathrm{K}=273.16+{ }^{\circ} \mathrm{C}$

TABLES 9.2 AND 9.3
THE UNITED STATES STANDARD ATMOSPHERE

For pressure altitude, $\mathrm{H}_{\mathrm{c}}<36,089.24$ fett:

$$
\begin{aligned}
& P_{a}=P_{a S L}\left(1-6.87535 \times 10^{-6} H_{c}\right)^{5.2561} \\
& T_{a}=T_{a S L}\left(1-6.87535 \times 10^{-6} H_{c}\right) \\
& \rho=\rho_{S L}\left(1-6.87535 \times 10^{-6} H_{c}\right)^{4.2561} \\
& a=a_{S L}\left(\frac{T_{a}}{T_{a S L}}\right)^{0.5}
\end{aligned}
$$

For pressure altitude, $\mathrm{H}_{\mathrm{c}}>36,089.24$ feet:

$$
\begin{aligned}
& P_{a}=6.6832 \mathrm{e}^{-4.80634 \times 10^{-5}\left(\mathrm{H}_{\mathrm{c}}-36,089.24\right)} \\
& \mathrm{T}_{\mathrm{a}}=216.66{ }^{ } \mathrm{K} \\
& \rho=0.00070612 \mathrm{e}^{-4.80634 \times 10^{-5}\left(\mathrm{H}_{\mathrm{c}}-36,089.24\right)} \\
& \mathrm{a}=573.58 \text { knots }
\end{aligned}
$$

TABLE 9.2
THE UNITED STATES STANDARD ATMOSPHERE

$\begin{aligned} & \mathrm{Hc} \\ & (\mathrm{Feet}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Pa}_{\mathrm{a}} \\ (\mathrm{Hg}) \\ \hline \end{gathered}$	$\begin{gathered} P_{P_{a} / P_{a S L}} \end{gathered}$	1/8	$\begin{gathered} T_{a} \\ (\cdot \mathrm{~K}) \end{gathered}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	${\stackrel{T}{a} /{ }^{\prime} \mathrm{I}_{a S L}}^{2}$	$\sqrt{\theta}$
-1000	31.018	1.0366	. 9646	290.15	17.034	1. 0069	1.0034
-900	30.907	1.0329	. 0680	289.95	17.028	1. 0066	1.0031
-800	30.796	1.0292	. 9715	289.74	17.022	1.0055	1.0027
-700	30.686	1.0255	. 9750	289.54	17.016	1.0048	1.0024
-600	30.575	1.0218	. 9785	289.34	17.010	1.0041	1.0021
- 500	30.465	1.0182	. 9821	289.14	17.004	1.0034	1.0017
-400	30.356	1.0145	. 9856	288.97	16.999	1.0028	1.0014
-300	30.247	1.0108	. 9892	288.77	16.993	1.0021	1.0010
-200	30.138	1.0072	. 9928	288.56	16.987	1.0014	1.0007
-100	30.029	1.0036	. 9963	288.36	16.981	1.0007	1.0003
0	29.921	1.0000	1.0000	288.16	16.975	1.0000	1.0000
100	29.813	. 9963	1.0036	287.96	16.969	. 9993	. 9997
200	29.705	. 9927	1.0072	287.76	16.963	. 9986	. 9993
300	29.598	. 9892	1.0109	287.55	16.957	. 9979	. 9990
400	29.491	. 9856	1.0145	287.35	16.951	. 9972	9986
500	29.384	. 9820	1.0182	287.18	16.946	. 9956	. 9.983
600	29.278	. 9785	1.0219	286.98	16.940	. 9959	. 9979
700	29.172	. 9749	1.0255	286,78	16.934	. 9952	. 9976
800	29.066	. 9714	1.0294	286.58	16.929	. 9945	. 9972
900	28.960	. 9679	1.0331	286.37	16.923	. 9938	. 9969
1000	28.855	. 9643	1.0369	286.17	16.917	. 9931	. 9966
1100	28.750	. 9608	1.0407	285.97	16.911	. 9924	. 9962
1200	28.646	. 9573	1.0445	285.77	16.905	. 9917	. 9959
1300	28.542	. 9539	1.0483	285.60	16.900	. 9911	. 9955
1400	28.438	. 9504	1.0521	285.39	16.894	. 99,04	. 2952
1500	28.334	. 9469	1.0559	285.19	16.888	. 9897	. 9948
1600	28.231	. 9435	1.0598	284.99	16.882	. 9890	. 9945
1700	28.128	. 9400	1.0637	284.79	16.876	. 9883	. 9941
1800	28.025	. 9366	1.0676	284.59	16.870	. 9876	. 9938
1900	27.923	. 9332	1.0715	284.39	16.864	. 9869	. 9934
2000	27.821	. 3298	1.075 .4	284.18	16.858	. 9862	. 9931
2100	27.719	. 9264	1.0794	284.01	16.853	9856	. 9928
2200	27.617	. 9230	1.0834	283.81	16.847	9849	. 9924
2300	27.516	. 9196	1.0873	283.61	16.841	. 9842	. 9921
2400	27. 415	. 9162	1.0913	283.41	16.835	. 0835	. 9917
2500	27.315	. 9!29	1.0954	283.20	16.829	9828	. 9914
2600	27.214	. 9095	1.0994	283.00	16.823	. 9821	. 9910
2700	27.114	. 9062	1. 1034	282.80	16.817	. 9814	. 9907
2800	27.015	. 9028	1.1075	282.60	16.811	. 9807	. 9903
2900	26.915	. 8995	1.1116	282.43	16.806	. 9801	. 9900

TABLE 9.2

TABLE 9.3

THE UNITED STATES STANDARD ATMOSPHERE

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\stackrel{\sigma}{\rho / \mathrm{PSL}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{\theta}$	(Knots)
-1000	1.0296	1.0147	. 9355	. 9679	. 9613	663.73
-900	1,0266	1.0132	. 9870	. 2711	. 9652	663.52
-800	1.0236	1.0117	. 9884	. 9742	. 9689	663.27
-700	1.0206	1.0103	. 9898	. 9774	. 9727	663.07
-600	1.0176	1.0088	. 9913	. 9807	. 9767	662.97
-500	1.0147	1.0073	. 9928	. 9338	. 9805	662.60
-400	1.0117	1.0059	. 9941	. 9870	. 9843	662.41
-300	1.0088	1.0044	. 9956	. 9902	. 9882	662.14
-200	1.0058	1.0029	. 9971	. 9935	. 9922	661.94
-100	1.0029	1.0015	. 9985	. 9967	. 9961	661.68
0	1.0000	1.0000	1.0000	1.0000	1.0000	661.48
100	. 9970	. 9985	1.0015	1.0033	1.0040	561.28
200	. 9941	. 9971	1.0029	1.0066	1.0080	661.02
300	. 9912	. 9956	1.0044	1.0099	1.0121	660.82
400	. 9883	. 9942	1.0058	1.0132	1.0161	660.55
500	. 9354	. 9927	1.0074	1.0165	1.0200	660.36
600	. 9825	. 9912	1.0039	1.0198	1.0241	660.09
700	. 9796	. 9898	1.0193	1.0232	1.0282	659.89
800	. 9768	. 9883	1.0110	1.0265	1.0323	659.63
900	. 9739	. 9869	1.0138	1.0300	1.0364	659.43
1000	. 9710	. 9854	1.0148	1.0334	1.0406	659.23
1100	. 9682	. 9840	1.0163	1.0368	1.0448	658.97
1200	. 9653	. 9825	1.0178	1.0402	1.0490	658.77
1300	. 9625	. 9811	1.)193	1.0436	1.0530	658.50
1400	. 9596	. 9796	1.0208	i. 0471	1.0573	658.31
1500	. 9568	. 9782	1.0223	1.0505	1.0615	658.04
1600	. 9540	. 9767	1.0239	1.0540	1.0658	657.84
1700	. 9511	. 9753	1.0253	1.0575	1.0700	657. 58
1800	. 9483	. 9739	1.0268	1.0510	1.0743	657.38
1900	. 9455	. 9724	1.0284	1.0645	1.0787	657.12
2000	. 9427	. 9710	1.0299	1.0681	1.0831	656.92
2100	. 9399	. 9695	1.0315	1.0717	1.0874	656.72
2200	. 9371	. 9681	1.0330	1.0752	1.0918	656.45
2300	. 9344	. 9656	1.0346	1.0788	1.0562	656.26
2400	. 9316	. 9652	1.0361	1.0823	1.1006	655.99
2500	. 9288	. 9638	1.0376	1.0860	1.1050	655.79
2600	. 9261	-9623	1.0392	1.0895	1.1094	655.53
2700	. 9233	. 9609	1.0407	1.0932	1.1140	655. 33
2800	. 9205	. 9595	1.0422	1.0968	1.1134	655.07
2900	. 9178	. 9581	1.0437	1.1000	1.1230	654.87

$\begin{gathered} \mathrm{H}_{c} \\ (\text { Feet }) \end{gathered}$	$\begin{gathered} P_{a} \\ \left({ }^{11} \mathrm{Hg}\right) \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	$1 / 5$	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \left({ }^{\circ} \mathrm{K}\right) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	$\mathrm{T}_{\mathrm{a}} \stackrel{\theta}{\mathrm{~T}_{\mathrm{aSL}}}$	$\sqrt{\theta}$
3000	26.816	. 8962	1.1157	282.22	16.800	. 9794	. 9896
3100	26, 717	. 8.929	1.1198	282.02	16.794	9787	9893
3200	26.619	. 8896	1.1240	281.82	16.780	. 9780	. 9889
3300	26.521	. 8863	1.1282	281.62	16.782	. 9773	. 9886
3400	26.423	. 8930	1.1363	281.42	16.775	. 9766	. 9882
3500	26.325	. 8798	1.1365	281.22	16.769	. 9759	. 9879
3600	26.228	. 8755	1.1407	281.01	16.763	. 9752	. 9875
3700	26.131	. 8733	1.1450	280.34	15.758	. 9745	. 9872
3300	25.034	. 8701	1.1452	280.64	16.752	. 9739	9869
3900	25.938	. 8668	1.1535	280.44	16.746	. 9732	. 9865
4000	25.841	. 8636	1.1578	280.24	16.740	. 9725	. 9862
4100	25.746	. 8604	1.1021	280.03	16.734	9718	9858
4200	25.650	. 8572	1.1655	279.83	16.728	. 9711	. 9855
4300	25.555	. 8540	1.1708	279.53	16.722	. 9704	. 9851
4400	25.460	. 8509	1.1752	279.43	16.716	. 9597	. 9848
4500	25.365	. 8477	1.1795	279.26	16.711	. 9691	. 9844
4600	25.270	. 8445	1.1840	279.05	16.705	. 9684	. 9841
4700	25.17i	. 8414	1.1884	278.85	15.699	. 9677	. 9837
4800	25.082	. 8382	1.1529	278.65	16.693	. 9670	. 9834
4900	24.989	. 8351	1.1973	278.45	16.687	. 9663	. 9830
5000	24.895	. 8320	1. 2018	278.25	16.681	. 9655	. 9827
5100	24.802	. 8289	1. 2063	278.05	16.675	. 9649	. 9823
5200	24.710	. 8258	1.2108	277.34	16.669	. 9642	. 9820
5300	24.617	. 8227	1.2154	277.67	16.663	. 9636	. 9816
5400	24.525	8196	1.2200	277.47	16.657	. 9629	. 9813
5500	24.433	8166	1.2245	277.27	16.651	. 9622	. 9809
5600	24.342	8135	1.2292	277.07	16.645	. 9615	. 9806
5700	24.250	8104	1.2338	275.86	16.639	. 9608	. 9802
5800	24.159	. 8074	1.2384	275.65	16.633	. 9601	. 9799
5900	24.050	. 8044	1.2431	276.46	16.627	. 9594	. 9795
6000	23.978	. 8013	1. 2478	276.26	16.621	. 9587	. 9792
6100	23.888	. 7983	1.2525	276.09	16.616	. 9581	. 9788
6200	23.798	. 7953	1.2572	275.88	16.610	. 9574	. 9785
6300	23.708	. 7923	1.2620	275.68	16.604	. 9567	. 9781
6400	23.618	. 7893	1. 2668	275.48	16.598	. 9560	. 9778
6500	23.529	. 7863	1.2716	275.28	16.592	. 9553	. 9774
6600	23.440	. 7834	1.2764	275.08	16.585	. 9546	. 9770
6700	23.352	. 7804	1.2812	274.88	16.579	. 9539	. 9767
6800	23.264	.7775	1.2861	274.57	15.573	. 9532	.9763
6900	23.175	. 7745	1.2910	274.50	16.568	. 9526	. 9760

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Fe} \mathrm{e} \text {) } \end{gathered}$	$\begin{gathered} \sigma \\ \rho / \mathrm{PSL} \end{gathered}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{\theta}$	$\begin{gathered} a \\ \text { (Knots) } \\ \hline \end{gathered}$
3000	. 9151	. 9566	1.0454	1.1042	1.1275	654.59
3100	. 9123	. 9552	1.0469	1.1079	1.1321	654.39
3200	. 9096	. 9538	1.0484	1.1116	1.1367	654.13
3300	. 9069	. 9523	1.0501	1.1153	1.1412	653.93
3400	9042	. 9509	1.0516	1.1190	1.1458	653.67
3500	. 9015	. 9495	1.0532	1.1228	1.1506	653.47
3600	. 8988	. 9481	1.0547	1.1265	1.1552	653.20
3700	. 8961	. 9466	1,0564	1.1304	1.1599	653.01
3800	. 8934	. 9452	1.0580	1.1342	1.1647	652.81
3900	. 8907	. 9438	1.0595	1.1380	1.1694	652.54
4000	. 8880	. 9424	1.06:1	1.1419	1.1743	652.34
4100	. 8854	. 9410	1,0627	1.1457	1.1789	652.08
4200	. 8827	. 9395	1.0644	1.1496	1.1838	651.88
4300	. 8801	. 9381	1.0660	1.1534	1.1886	651.62
4400	8774	. 9367	1.0676	1.1574	1.1936	651.42
4500	. 8748	. 9353	1.0692	1.1612	1.1983	651.15
4600	. 8721	. 9339	1.0708	1.1652	1.2033	650.96
4700	, 8695	. 9325	1.0724	1.1691	1. 2082	650.69
4800	. 8669	. 9311	1.0740	1.1731	1.2132	650.49
4900	. 8643	. 9297	1.0756	1.1770	1.2180	650.23
5000	. 8616	. 9283	1.0772	1.1811	1.2232	650.03
5100	. 8590	. 9269	1.0789	1.1850	1.2281	649.76
5200	. 8564	. 9255	1.0805	1.1891	1.2333	649.57
5300	. 8538	. 9241	1.0821	1.1931	1.2382	649.30
5400	. 8512	. 9226	1.0839	1.1972	1. 2434	649.10
5500	. 8487	. 9212	1.0855	1.2012	1.2485	648.84
5600	. 8461	. 9198	1.0872	1.2054	1.2538	648.64
5700	. 8435	. 9184	1.0889	2. 2094	1.2587	648. 38
5800	. 8409	. 9171	1.0904	1.2136	1.2640	648.18
5900	. 8384	. 9156	1.0922	1.2177	1.2692	647.91
6000	. 8358	9143	1.0937	1.2219	1. 2746	647.71
6100	. 8333	. 9129	1.0954	1.2260	1,2797	647.45
6200	. 8307	. 9115	1.0971	1.2303	1.2851	647.25
6300	. 8282	. 9101	1.0988	1.2344	1.2904	646.99
6400	. 8257	. 9087	1.1005	1.2387	1,2958	646.79
6500	. 8231	. 9073	1.1022	1.2429	1.3010	646.52
6600	. 8206	. 9059	1.1039	1.2471	1.3064	646.26
6700	. 8181	. 9045	1.1056	1.2514	1.3119	646.06
6800	. 8156	. 9031	1.1073	1.2557	1.3174	645.80
6900	. 8131	. 9017	1.1090	1.2601	1.3229	645.60

TABLE 9.3

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pa}_{\mathbf{a}} \\ (י \mathrm{Hg}) \end{gathered}$	$\begin{gathered} \delta \\ \underline{P}_{a} / P_{a S L} \end{gathered}$	$1 / \delta$	$\begin{gathered} \mathrm{T}_{\mathbf{a}} \\ (\cdot \mathbf{K}) \\ \hline \end{gathered}$	$\sqrt{T_{a}}$	$\stackrel{\theta}{T_{a} / T_{a S L}}$	$\sqrt{\theta}$
7000	23.088	. 7716	1. 2959	274.30	16.562	. 9519	9756
7100	23.000	. 7687	1. 3008	274.10	16.556	. 9512	9753
7200	22.913	. 7657	1.3058	273.90	16.550	. 9505	9749
7300	22.826	. 7628	1.3108	273.69	16.544	. 9498	. 9746
7400	22.739	. 7599	1.3158	273.49	16.538	. 9491	. 9742
7500	22.653	. 7570	1. 3208	273.29	16.532	. 9484	. 9739
7600	22.567	. 7542	1. 3258	273.09	16.525	. 9477	. 9735
7700	22.481	. 7513	1.3309	272.92	16.520	. 9471	9732
7800	22.395	. 7484	1.3360	272.71	16.514	. 9464	9728
7900	22.310	. 7456	1.3411	272.51	16.508	. 9457	. 9725
8000	22.225	. 7427	1.3462	272.31	16.502	. 9450	. 9721
8100	22.140	. 7399	1.3514	272.11	16.496	. 9443	. 9718
8200	22.055	. 7371	1.3566	271.91	16.490	. 9436	. 9714
8300	21.971	. 7343	1.3618	271.71	16.484	. 9429	. 9710
8400	21.887	. 7314	1. 3670	271. 50	16.477	. 9422	. 9707
8500	21.803	. 7286	1. 3723	271.33	16.472	. 9416	. 9703
8600	21.719	. 7259	1.3776	271.13	16.466	. 9409	. 9700
8700	21.636	7231	1.3829	270.93	16.460	9402	9696
8800	21.553	. 7203	1.3882	270.73	16.454	. 9395	. 9693
8900	21.470	. 7175	1.3935	270.52	16. 448	. $9388{ }^{\prime}$. 9689
9000	21.388	. 7148	1.3989	270.32	16.441	. 9381	. 9686
9100	21.305	7120	1. 4043	270.12	16.435	. 9374	9682
9200	21.223	. 7093	1.4098	269.92	16.429	. 9367	. 9679
9300	21.142	. 7065	1.4152	269.75	16.424	. 9361	. 9675
9400	21.060	. 7038	1.4207	269.54	16.418	. 9354	. 9671
9500	20.979	7011	i. 4262	269.34	16.412	. 9347	. 9668
9600	20.393	. 6984	1.4317	269.14	16.406	. 9340	. 9664
9700	20.817	. 6957	1.4372	268.94	16.399	. 9333	9661
980 C	20.737	. 6930	1.4428	268.74	16.393	. 9326	. 9657
9900	20.656	. 6903	1.4484	268.54	16.387	. 9319	. 9654
10000	20.577	. 6877	1.4541	268.33	16.381	. 9312	9650
10100	20.497	. 6850	1.4597	268. 16	16.376	. 9306	9647
10200	20.417	. 6823	1.4654	267.96	16.369	. 9299	. 9643
10300	20.338	. 6797	1.4711	267.76	16.363	. 7292	. 9639
10400	20.259	.6771	1.4768	267.56	16.357	. 9285	. 9636
10500	20.180	. 6744	1.4826	267.35	16.351	. 9278	. 9632
10600	20.102	. 6718	1.4884	267.15	16.345	. 9271	. 9629
10700	20.024	. 6692	1. 4942	266.95	16.339	. 9264	9625
10200	19.946	. 6666	1.5001	266.75	16.332	. 9257	. 9622
10900	19.868	. 6640	1. 5059	266.58	16.327	. 9251	. 9618

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \text { (Feet) } \\ \hline \end{gathered}$	$\stackrel{\sigma}{\rho / \mathrm{PSL}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / \delta \sqrt{\theta}$	(Knots)
7000	. 8106	. 9004	1.1106	1.2643	1.3283	645.34
7100	. 8081	. 8990	1.1123	1. 2688	1.3340	645.15
7200	. 8056	. 8976	1.1141	1.2731	1.3395	644.88
7300	. 8032	. 8962	1.1158	1.2775	1.3451	644.68
7400	. 8007	. 8948	1.1176	1.2819	1.3506	644. 42
7500	. 7982	8935	1.1192	1.2864	1.3564	644.22
7600	. 7958	. 8921	1.1210	1.2908	1.3621	643.96
7700	7933	. 8907	1,1227	1. 2953	1.3678	643.76
7800	. 7909	. 8893	1.1245	1.2997	1.3734	643.59
7900	. 7884	. 8880	1.1261	1.3043	1.3793	643.29
8000	. 7860	. 8866	1.1279	1.3087	1.3850	643.03
8100	. 7836	. 8852	1,1297	1.3133	1.3909	642,85
8200	. 7811	. 8838	1.1315	1.3178	1.3966	642.57
8300	. 7787	. 8825	1.1331	1.3223	1.402	642.30
8400	7763	. 8811	1.1349	1,3270	1. 408	642. 10
8500	. 7739	. 8797	1.1368	1.3316	1.414	641.84
8600	. 7715	. 8784	1.1384	1.3363	1.420	641.64
8700	2691	. 8770	1.1403	1.3409	1.426	641. 38
8800	. 7667	. 8756	1.1421	1.3456	1.432	641.18
8900	. 7643	. 8743	1.1438	1.3503	1.438	640.91
9000	. 7619	. 8729	1.1456	1.3550	1.444	640.72
9100	. 7595	. 8715	1.1474	1.3597	1.450	640. 45
9200	. 7572	. 8702	1.1492	1.3645	1.456	640.25
9300	. 7548	. 8688	1.1510	1.3693	1.462	639.99
9400	7525	. 8675	1.1527	1,3740	1.469	639.72
9500	. 7501	. 8661	1.1546	1.3789	1.475	639.52
9600	. 7478	. 8648	1.1563	1.3836	1.481	639.26
9700	, 7454	. 8634	1,1582	1.3886	1.487	639.06
9800	. 7431	. 8621	1.1600	1.3934	1.494	638.79
9900	. 7408	. 8607	1.1618	1.3984	1.500	638.59
10000	. 7384	. 8593	1.1637	1.4032	1.506	638.31
10100	. 7361	. 8580	1.1655	1.4082	1.513	638.13
10200	. 7338	. 8566	1.1674	1.4131	1.519	637.86
10300	. 7315	. 8553	1.1692	1.4180	1.526	637.60
10400	. 7292	. 8540	1.1710	1.4231	1.532	637,40
10500	. 7269	. 8526	1.1729	1.4281	1.539	637.13
10600	. 7246	. 8513	1.1747	1.4332	1.545	636.94
10700	. 7223	. 8499	1.1766	1.4382	1. 552	636.67
10800	. 7200	. 8486	1.1784	1.4434	1.559	636.47
10900	. 7178	. 8472	1.1804	1.4485	1.566	636.21

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \end{gathered}$	$\begin{gathered} \mathbf{P a}_{\mathbf{a}} \\ (1 \mathrm{Hg}) \end{gathered}$	$\begin{gathered} \delta \\ \mathrm{P}_{\mathrm{a}} / \mathrm{P}_{\mathrm{aSL}} \\ \hline \end{gathered}$	1/ठ	$\begin{gathered} \mathrm{T}_{\mathbf{a}} \\ (\cdot \mathrm{K}) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	$\stackrel{\theta}{\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{a} L}}$	$\sqrt{\theta}$
11000.	19.790	. 6614	1.5118	266.38	16.321	. 9244	9614
11100	19.713	. 6588	1.5177	266.17	16.315	. 9237	. 9611
11200	19.636	. 6562	1.5237	265.97	16.309	. 9230	. 9607
11300	19.559	. 6537	1.5297	265.77	16.302	. 9223	. 9604
11400	19.483	. 6511	1. 5357	265.57	16.296	. 9216	. 9600
11500	19.407	. 6486	1.5417	265.37	16.290	. 9209	. 9597
11600	19.331	. 6460	1.5478	265.16	16. 284	. 9202	. 9593
11700	19.255	. 6435	1.5539	264.99	16.279	. 9196	. 9589
11800	19.179	. 6410	1.5600	264.79	16.272	. 9189	. 9586
11900	19.104	. 6384	1. 5661	264.59	16.266	. 9182	. 9582
12000	19.029	. 6359	1.5723	264.39	16.260	. 9175	. 9579
12100	18.954	. 6334	1. 5785	264.19	16.254	. 9168	. 9575
12200	18.879	. 6309	1.5848	263.98	16.248	. 9161	. 9571
12300	18.805	. 6285	1.5910	263.78	16.241	. 9154	. 9568
12400	18.731	. 6260	1.5973	263.58	16.235	. 9147	. 9564
12500	18.657	. 6235	1.6036	263.41	16.230	. 9141	. 9561
12600	18.583	. 6210	1.6100	263.21	16.224	. 9134	. 9557
12700	18.510	. 6186	1.6164	263.00	16.217	. 9127	. 9553
12800	18.437	. 6161	1.6228	262.80	16.211	. 9120	. 9550
12900	18.364	. 6137	1.6293	262.60	16.205	. 9113	. 9546
13000	18.291	. 6113	1.6357	262.40	16.199	. 9106	. 9543
13100	18.219	. 6089	1.6422	262.20	16.192	. 9099	. 9532
13200	18.147	. 6064	1.6488	262.00	16.186	. 9092	. 9535
13300	18.075	. 6040	1.6554	261.82	16.181	. 9086	. 9532
13400	18,003	. 6016	1.6619	261,62	16.175	. 9079	. 9528
13500	17.931	. 5992	1.6686	261.42	16.168	. 9072	. 9525
13600	17.860	. 5969	1.6752	261.22	16.162	. 9065	. 9521
13700	17.789	. 5945	1.6820	261,02	16.156	. 9058	. 9517
13800	17.718	. 5921	1.6887	260.81	16.150	. 9051	. 9514
13900	17.647	. 5898	1.6954	260.61	16.143	. 9044	. 9510
14000	17.577	. 5874	1.7022	260.41	16.137	. 9037	. 9507
14100	17.507	. 5851	1.7090	260.24	16.132	. 9031	. 9503
14200	17.437	. 5827	1.7159	260.04	16.126	. 9024	. 9499
14300	17.367	. 5804	1.7228	259.83	16.119	. 9017	. 9496
14400	17.298	. 5781	1.7297	259.63	16.113	. 9010	. 9492
14500	17.228	. 5758	1.7367	259.43	16.107	. 9003	. 9488
14600	17.159	. 5735	1.7436	259.23	16.101	. 8996	. 9485
14700	17.090	. 5712	1.7507	259.03	16.094	. 8989	. 9481
14800	17.022	. 5689	1.7577	258.83	16.088	. 8982	. 9478
14900	16.953	. 5666	1.7648	258.65	16.083	. 8976	. 9474

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Fe} \mathrm{et}) \end{gathered}$	$\stackrel{\sigma}{\rho / \rho_{S L}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	${ }^{1} 1 / \sqrt{6}$	$\begin{gathered} a \\ (\text { Knots }) \end{gathered}$
11000	7155	. 8459	1.1822	1.4535	1.572	635.94
11100	7132	8446	1.1840	1.4588	1.579	635.75
11200	. 7110	. 8432	1.1860	1.4639	1.586	635.48
11300	. 7087	. 8419	1.1878	1.4692	1.593	635.28
11400	. 7065	. 8406	1.1896	1.4743	1.599	635.03
11500	. 7043	. 8392	1.1916	1.4796	1.6067	634.82
11600	. 7020	. 8379	1.1935	1.4848	1.6136	634.56
11700	. 6998	. 8366	1.1953	1.4901	1.6206	634.29
11800	6976	8352	1.1973	1.4955	1. 6276	634.09
11900	6953	. 8339	1.1992	1.5307	1.6345	633.83
12000	. 6931	. 8326	1.2011	1. 5062	1.6417	633.63
12100	. 6909	. 8312	1.2031	1. 5115	1.6488	633.36
12200	6387	. 8299	1.2050	1.5168	1.6557	633.10
12300	. 6865	. 8286	1.2069	1.5224	1.6631	632.90
12400	6843	. 8273	1.2088	1.5277	1.6702	632.64
12500	6821	. 8259	1.2108	1.5333	1.6776	632.44
12600	. 6000	. 8246	1.2127	1. 5387	1.6846	632.17
12700	. 6778	. 8233	1.2146	1. 5442	1.6926	631. 91
12800	. 6756	. 8220	1.2165	1.5498	1.6994	631.71
12900	. 6735	. 8207	1.2185	1.5553	1.7063	631.45
13000	. 6713	. 8194	1.2204	1. 5610	1.7142	631.25
13100	. 6691	. 8180	1.2225	1. 5666	1.7217	630.98
13200	. 6670	8167	1.2244	1. 5722	1.7292	630.72
13300	. 6648	. 8154	1.2264	1. 5779	1.7368	630.52
13400	. 6627	. 8141	1.2284	1.5835	1.7442	630.26
13500	. 6606	. 8128	1.2303	1.5894	1.7521	630.06
13600	. 6584	. 8115	1.2323	1.5950	1.7596	629.79
13700	. 6563	. 8102	1. 2343	1.6008	1.7674	629.53
13800	. 6542	. 8089	1.2362	1.6066	1.7750	629.33
13900	. 6521	. 8076	1.2382	1.6124	1.7828	629.07
14000	. 6500	. 8062	1.2404	1.6184	1.7908	628.87
14100	. 6479	. 8049	1.2424	1.6241	1.7985	628, 60
14200	. 6458	. 8036	1. 2444	1.6300	1.8064	628.34
14300	. 6437	. 8023	1. 2464	1.6360	1.8144	628.14
14400	. 6416	. 8010	1.2484	1.6419	1.8224	627.88
14500	. 6395	. 7997	1.2505	1.6478	1.8304	627.61
14600	. 6375	. 7984	1.2525	1.6539	1.8386	627.41
14700	. 6354	. 7971	1.2545	1.6598	1.8464	627.15
14800	. 6333	. 7958	1.2566	1.6660	1.8548	626.95
14900	. 6313	. 7945	1.2587	1.6720	1.8629	626.69

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathbf{a}} \\ \left(\mathrm{Hg}_{\mathrm{g}}\right) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	1/8	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \left({ }^{\bullet} \mathrm{K}\right) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	$\stackrel{\theta}{\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{a}} \mathrm{INL}^{2}}$	$\sqrt{\theta}$
15000	16.885	. 5643	1.7719	258.45	16.076	. 8969	. 9470
15100	16.817	. 5620	1.7791	258.25	16.070	. 8962	. 9467.
15200	16.750	5598	1.7863	258.05	16.084	8955	. 9463
15300	16.682	. 5575	1.7935	257.85	16.058	8948	. 9459
15400	16.615	5553	1.8008	257.64	16.051	8941	. 9456
15500	16.548	5530	1.8081	257.44	16.045	. 8934	. 9452
15600	16.481	. 5508	1.8154	257.24	16.039	. 8927	. 9449
15700	16.414	5486	1.8228	257.07	16.033	8921	9445
15800	16.348	. 5463	1.8302	256.87	16.027	. 8914	. 9441
15900	16.282	5441	1.8376	256.66	16.021	. 8907	9438
16000	16.216	. 5419	1.8451	256.46	16.014	. 8900	. 9434
16100	16.150	5397	1.8526	256, 26	16,008	8893	9430
16200	16.085	5375	1.8601	256.06	16.002	. 8886	9427
16300	16.019	5354	1.8677	255.86	15.996	. 8875	9423
16400	15.954	5332	1.8753	255.66	15.989	.887?	9419
16500	15.889	5310	1.8830	255.48	15.984	. 8866	. 9416
16600	15.325	5288	1.8907	255.28	15.978	. 8859	9412
16700	15.760	5267	1.8984	255.08	15.971	. 8852	9408
16800	15.696	5245	1. 9062	254.88	15.965	. 8845	. 9405
16900	15.632	5224	1.9140	254.68	15.959	. 8838	. 9401
17000	15.568	5203	1.9218	254. 47	15.952	. 8831	. 9397
17100	15.505	5182	1.9297	254.27	15.946	. 8824	. 9394
17200	15.441	5160	1.9376	254.07	15.940	. 8817	. 9390
17300	15.378	5139	1.9456	253.90	15.934	. 8811	. 9386
17400	15.315	5118	1.9536	253.70	15.928	. 8804	. 9,383
17500	15.252	. 5097	1.9617	253.49	15.922	. 8797	. 9379
17600	15.190	5076	1.9697	253.29	15.915	. 8790	. 9375
17700	15.127	5055	1.9778	253.09	15.909	. 8783	9372
17800	15.065	5035	1.9860	252.89	15.902	. 8776	. 9368
17900	15.003	5014	1.9942	252.69	15.896	. 8769	. 9364
18000	14.942	4993	2.0024	252.49	15.890	. 8762	. 9361
18100	14.880	4973	2.0107	252. 31	15.884	. 8756	. 9357
18200	14.819	4952	2.0191	252.11	15.878	. 8749	. 9353
18300	14.758	4932	2.0274	251.91	15.872	. 8742	9350
18400	14,697	4912	2.0358	251.71	15.865	8735	9346
18500	14.636	4891	2.0442	251.51	15.859	8728	. 9342
18600	14.576	4871	2.0527	251.30	15.853	8721	. 9339
18700	14.515	4851	2.0613	251.10	15.846	8714	$\underline{9335}$
18800	14.455	. 4831	2,0698	250.90	15.840	. 8707	. 9331
18900	14.395	4811	2. 0784	250.73	15.834	. 8701	. 9328

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\text { Feet }) \\ \hline \end{gathered}$	$\stackrel{\sigma}{\rho^{/ \rho S L}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{0}$	(Knots)
15000	. 6292	. 7932	1.2607	1.6781	1.8712	626.42
15100	. 6271	. 7920	1.2626	1.6843	1.8794	626. 22
15200	. 6251	. 7907	1.2647	1.6904	1.8877	625.96
15300	6231	. 7894	1. 2663	1.6965	1.3960	625.69
15400	6210	7881	1.2689	1.7025	1.9047	625.50
15500	. 6190	. 7868	1.2710	1.7090	1.9129	625.23
15600	.6170	. 7855	1.2731	1.7154	1.9216	625.03
15700	. 6149	. 7842	1.2752	1.7217	1.9301	624.77
15800	. 6129	. 7829	1.2773	1.7279	1.9386	624.50
15900	. 6109	. 7816	1.2794	1.7344	1.9473	624.30
16000	. 6089	. 7804	1. 2814	1.7407	1.9559	624.04
16100	. 6069	. 7791	1.2835	1.7470	1.9645	623.78
16200	6049	. 77778	1.2857	1.7536	1.9735	623.58
16300	. 6029	. 7765	1.2878	1.7600	1.9822	623.30
16400	6009	. 7752	1. 2900	1.7664	1.9909	623.04
16500	5990	7740	1.2920	1.7731	2.0001	622.84
16600	5\%70	7727	1.2942	1.7796	2.0090	622.58
16700	5950	7714	1.2963	1.7861	2.0178	622.31
16800	. 5931	. 7701	1.2985	1.7928	2.0270	622.11
16900	. 5911	. 7689	1.3006	1.7994	2.0361	621.85
17000	. 5891	. 7676	1.3028	1.8060	2.0451	621.58
17100	. 5872	7663	1.3050	1.8128	2, 0543	621.39
17200	. 5853	. 7651	1.3070	1.8195	2.0636	621.12
17300	. 5833	. 7638	1.3092	1.8262	2.0728	620.86
17400	. 5814	7625	1,3115	1.8331	2.0823	620.66
17500	5794	. 7612	1.3137	1.8399	2.0916	620.39
17600	. 5775	. 7600	1.3158	1.8467	2.1010	620.13
17700	. 5756	7587	1.3180	1.8537	2.1106	619.93
17800	. 5737	7575	1.3201	1.8605	2.1201	619.67
17900	. 5718	. 7562	1.3224	1.8674	2.1295	619.40
18000	. 5699	. 7549	1.3247	1.8745	2.1393	619.21
18100	. 5680	. 7537	1.3268	1.8815	2.1490	618.95
18200	. 5661	. 7524	1.3291	1.8885	2.1587	618.68
18300	. 5642	. 7511	1.3314	1.8957	2.1686	618.49
18400	. 5623	. 7499	1.3335	1.9027	2.1783	618.22
18500	. 5604	. 7486	1.3358	1.9098	2.1882	617.96
18600	. 5585	. 7474	1.33880	1.9171	2.1983	617.76
18700	. 5567	. 7461	1,3403	1.9242	2.2081	617.49
18800	. 5548	. 7449	1.3425	1.9314	2.2182	617.23
18900	. 5529	. 7436	1.3448	1.9388	2. 2284	617.03

$\begin{gathered} \text { Hic } \\ \text { (Feet) } \end{gathered}$	$\begin{gathered} P_{a} \\ \left({ }^{\prime \prime}-g\right) \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	1/8	$\begin{gathered} \mathrm{P}_{\mathrm{a}} \\ \left({ }^{\circ} \mathrm{K}\right) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	$\begin{gathered} \theta \\ \mathrm{T}_{a} / \mathrm{T}_{2 S I} \end{gathered}$	$\sqrt{\theta}$
19000	14.336	. 4791	2.0871	250.53	15.828	. 8694	9324
19100	14.276	4771	2.0958	250.32	15.822	8687	9320
19200	14.217	. 4751	2.1045	250.12	15.815	8680	. 9317
19300	14.158	. 4731	2.1133	249.92	15.809	8673	9313
19400	14.099	. 4712	2.1221	249.72	15.803	8666	9309
19500	14,040	. 4692	2.1310	249.52	15.796	. 8659	. 9306
19600	13.502	. 4673	2.1399	249.32	15.790	. 8652	. 9302
19700	13.523	. 4553	2.1489	249.14	15.784	. 8646	92.98
19800	13.855	. 4634	2.1579	248.94	15.778	. 8639	9294
19900	13.807	. 4514	2.1659	248.74	15.771	. 8632	. 9291
20000	13.750	. 4555	2.1760	218.54	15.765	. 8625	9287
. 20100	13.692	. 4576	2.1852	248.34	15.759	. 8618	. 9283
20200	13.635	. 4557	2.1944	248.13	15.752	. 8611	. 9280
20300	13.578	. 4537	2.2036	247.93	15.745	. 8604	. 9276
. 20400	13.521	. 4518	2.2125	247. 73	15.739	8597	. 9272
. 2050	13.464	. 4500	2.2222	247.56	15.734	. 8591	. 9269
20600	13.407	. 44.81	2.2315	247.36	15.728	. 8584	. 9265
$\underline{20700}$	13.351	4462	2.2410	247.15	15.721	. 8577	. 9261
20800	13.295	. 4443	2.2504	246.95	15.715	. 8570	. 9257
20900	13.239	. 4424	2.2600	246.75	15.708	. 8563	. 9254
21000	13.183	. 4406	2.2695	246.55	15.702	. 8556	. 9250
21100	13.128	. 4387	2.2792	246.35	15.695	. 8549	. 9246
21200	13.072	. 43 ó9	2.2888	246.15	15.689	. 8542	. 9243
21300	13.017	. 4350	2.2985	245.97	15.684	. 8536	. 9239
21400	12.962	. 4332	2.3082	245.77	15.677	. 8529	. 9235
21500	12.507	. 4313	2.3180	245.57	15.671	. 8522	. 9231
21600	12.052	. 4255	2. 3279	245.37	15.664	. 8515	. 9228
. 21700	12.798	. 4277	2. 3378	245.17	15.658	. 8508	. 9224
-21800	12.744	. 4255	2.3478	244.96	15.651	. 8501	. 9220
21900	12.690	. 4241	2.3578	244.76	15.645	. 8494	.9216
22000	12.636	. 4223	2. 3678	244.56	15.638	. 8487	. 9213
22150	12.582	. 4205	2. 378	244.39	15.633	. 8481	. 9209
22200	12.529	. 4187	2.388	244.19	15.626	. 8474	.9205
22300	12.475	.4169	2. 398	243.99	15.620	. 8467	. 9202
22400	12.422	. 4151	2. 408	243.78	15,614	. 8460	9198
22500	12.369	. 4134	2.418	243.58	15.607	. 8453	. 9194
22600	12.316	. 4116	2.429	243.38	15.601	. 8446	. 9190
22700	12.264	. 4098	2. 439	243.18	15. 594	. 8439	. 9187
22800	12.211	. 4081	2.450	242.98	15.588	. 8432	. 9183
22900	12.159	. 4063	2.460	242.80	15.582	. 8426	. 9179

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Fe} \mathrm{e}) \\ \hline \end{gathered}$	$\stackrel{\sigma}{\rho / \rho S L}$	$\sqrt{\sigma}$	$1 / \sqrt{0}$	$\sqrt{\theta} / \delta$	$1 / \delta \sqrt{\theta}$	$\begin{gathered} \mathrm{a} \\ \text { (Knots) } \end{gathered}$
19000	5511	. 7424	1. 3470	1.9460	2. 2385	616.77
19100	5492	. 7411	1.3493	1.9533	2. 2486	616.50
19200	5474	. 7399	1.3515	1.9608	2.259	616.30
19300	. 5455	. 7386	1.3539	1.9682	2. 269	616.04
19400	. 5437	. 7374	1.3561	1.9756	2.279	615.77
19500	. 5419	. 7361	1.3585	1.9832	2.290	615.58
19600	. 5400	. 7349	1.3607	1.9906	2. 300	615.31
19700	. 5382	. 7337	1.3630	$1.998 i$	2. 311	615.05
19800	. 5364	. 7324	1.3654	2.0056	2.321	614.73
15900	. 5346	. 7312	1.3676	2.0133	2. 332	614.58
20000	. 5328	. 7299	1.3701	2.0209	2.343	614.32
20100	. 5310	. 7287	1.3723	2.0285	2.353	614.05
20200	. 5292	. 7275	1.3746	2.0364	2.364	613.86
20300	. 5274	. 7262	1. 3770	2.0441	2. 375	613.59
20400	5256	+ 7250	1.3793	2.0518	2. 386	613.33
20500	. 5238	. 7238	1.3816	2.0598	2.397	613.13
20600	. 5220	. 7225	1.3841	2.0676	2. 408	612.86
20700	. 5202	. 7213	1.3864	2.0754	2. 419	612.60
20800	. 5185	. 7201	1.3887	2.0833	2.431	612.34
20900	. 5167	. 7188	1.3912	2.0914	2. 442	612.14
21000	. 5149	. 7176	1.3935	2.0994	2. 453	611.87
$\underline{21100}$. 5132	. 7164	1.3959	2.1074	2. 465	611.61
-21200	. 5114	. 7152	1.3982	2.1156	2.476	611.41
21300	. 5097	. 7139	1.4008	2.1236	2. 488	611.15
21400	. 5079	. 7127	1.4031	2. 1317	2. 499	610.88
21500	. 5062	7115	1.4055	2.1398	2. 511	610.62
21600	. 5044	. 7103	1. 4079	2.1482	2. 522	610.42
21700	. 5027	. 7090	1.4104	2.1565	2. 534	610.15
21800	. 5010	. 7078	1.4128	2.1647	2. 546	609.89
21900	.4993	. 7066	1.4152	2.1730	2. 558	609.62
22000	. 4975	7054	1.4176	2.1815	2. 570	609.43
22100	4958	7042	1.4201	2.1399	2. 582	609.16
22200	. 4941	. 7030	1.4225	2.1533	2. 594	608.90
22300	. 4924	. 7017	1.4251	2. 2070	2. 606	608.70
22400	4907	$\bigcirc 7005$	1. 4276	2. 2155	2.618	608.43
22500	.4890	. 6993	14300	2.2240	2.631	608.17
22600	4873	. 6981	1.4325	2. 2325	2.643	607.90
- 22700	4856	. 6969	1.4349	2,2414	2. 656	607.71
-22800	. 4840	. 6957	1.4374	2.2500	2.668	607.43
22900	. 4823	. 6945	1.4399	2.2587	2.680	607.17

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Feet}) \end{gathered}$	$\begin{gathered} \mathbf{P a}_{\mathbf{a}} \\ (\mathrm{H} \mathrm{Hg}) \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	$1 / 8$	$\begin{array}{r} \mathrm{T}_{\mathbf{a}} \\ \left({ }^{\bullet} \mathrm{K}\right) \\ \hline \end{array}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	$\stackrel{\theta}{T_{a} / T_{a S L}}$	$\sqrt{\theta}$
23000	12.107	. 4046	2.471	242.60	15.576	. 8419	. 9175
23100	12.055	4029	2,481	242.40	15,569	8412	9172
23200	12.003	. 4011	2.492	242. 20	15.563	. 8405	. 9168
23300	11.952	. 3994	2.503	242.00	15.556	. 8398	. 9164
23400	11.901	. 3977	2,514	241.80	15.550	8391	. 9160
23500	11.849	. 3960	2.525	241.59	15.543	. 8384	. 9157
23600	11.798	. 3943	2.535	241.39	15.537	8377	. 9153
23700	11.748	. 3926	2.546	241.22	15.531	8371	. 9149
23800	11.697	. 3909	2.557	241.02	15.525	8364	. 9145
23900	11.646	. 3892	2.569	240.82	15.518	. 8357	. 9142
24000	11.596	. 3875	2.580	240.61	15.512	. 8350	. 9138
24100	11.546	. 3859	2.591	240.41	15.505	8343	. 9134
24200	11.496	. 3842	2.602	240.21	15.499	. 8336	. 9130
24300	11.446	. 3825	2.613	240.01	15.492	. 8329	. 9126
24400	11.397	. 3809	2.625	239.81	15.486	. 8322	. 9123
24500	11.347	. 3792	2.636	239.63	15.480	. 8316	. 9119
24600	11.298	. 3776	2.648	239.43	15.474	. 8309	. 9115
24700	11.249	3759	2.659	239.23	15.467	. 8302	. 9111
24800	11.200	. 3743	2.671	239.03	15.461	. 8295	. 9108
24900	11.152	. 3727	2.683	238.83	15.454	. 8288	. 9104
25000	11.103	. 3710	2.694	238.63	15.448	. 8281	. 9100
25100	11.055	. 3694	2, 706	238,42	15.441	. 8274	. 9096
25200	11.006	. 3678	2.718	238.22	15.434	. 8267	. 9093
25300	10.958	. 3662	2.730	238.05	15.429	. 8261	. 9089
25400	10.911	. 3646	2.742	237.85	15.422	. 8254	9085
25500	10.863	. 3630	2.754	237.65	15.416	. 8247	. 9081
25600	10.815	. 3614	2.766	237.44	15.409	. 8240	. 9077
25700	10.768	. 3598	2. 778	237.24	15.403	. 8233	. 9074
25800	10.721	. 3583	2.790	237.04	15.396	. 8226	. 9070
25900	10.674	. 3567	2.803	236.84	15.390	. 8219	. 9066
26000	10.627	. 3551	2.815	236.64	15,383	. 8212	9062
26100	10.580	. 3536	2.827	236.46	15,377	. 8206	9058
26200	10.534	. 3520	2.840	236.26	15.371	. 8199	. 9055
26300	10.487	. 3505	2.852	236.06	15.364	. 8192	. 9051
26400	10.441	. 3489	2.865	235.86	15,358	. 8185	. 9047
26500	10.395	. 3474	2.878	235.66	15.351	. 8178	. 9043
26600	10.349	. 3459	2.891	235.46	15,345	. 8171	. 9039
26700	10.304	. 3443	2. 903	235. 25	15.338	. 8164	. 9036
26800	10.258	. 3428	2.916	235.05	15.331	. 8157	. 9032
26900	10.213	. 3413	2.929	234.88	15.326	8151	9028

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\text { Feet }) \end{gathered}$	$\stackrel{\sigma}{\rho / \rho S L}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / \delta \sqrt{\theta}$	$\begin{gathered} \mathrm{a} \\ \text { (Knots) } \end{gathered}$
23000	. 4806	. 6933	1.4424	2. 2674	2. 693	606.90
23100	. 4789	. 6921	1. 1.4449	2,2764	2.706	606,70
23200	. 4773	. 6909	1.4474	2. 2853	2.719	606.44
23300	. 4756	. 6897	1.4499	2. 2941	2.731	606.18
23400	. 4740	. 6885	1.4524	2.3030	2. 744	605.91
23500	.4723	. 6873	1.4550	2.3122	2.757	605.71
23600	. 4707	. 6861	1.4575	2. 3212	2. 770	605.45
23700	. 4690	. 6849	1.4601	2. 3302	2.783	605,18
23800	. 4674	. 6837	1.4626	2.3392	2. 797	604.92
23900	. 4657	. 6825	1.4652	2.3486	2.810	604.72
24000	. 4641	. 6813	1.4678	2. 3578	2.823	604.46
24100	. 4625	. 6881	1.4704	2. 3669	2.837	604.19
24200	. 4609	. 6789	1.4730	2.3762	2.850	603.93
24300	. 4593	. 6777	1.4756	2. 3854	2.864	603.66
24400	. 4577	. 6765	1.4782	2.3951	2.877	603.46
24500	. 4560	. 6753	1.4808	2.404	2.891	603.20
24600	. 4544	. 6742	1.4832	2.413	2.905	602.93
24700	. 4528	. 6730	1.4859	2.423	2.919	602.67
24800	. 4512	. 6718	1.4885	2.433	2.933	602.47
24900	. 4497	. 6706	1.4912	2.442	2.947	602.21
25000	. 4481	. 6694	1.4939	2.452	2.961	601.94
25100	. 4465	. 6682	1.4966	2.461	2.975	601.68
25200	. 4449	. 6671	1.4990	2.471	2.990	601.48
25300	. 4433	. 6659	1.5017	2.481	3.004	601.22
25400	-4418	6647	1.5044	2.491	3,018	600.95
25500	. 4402	6635	1.5072	2. 501	3.033	600.69
25600	. 4387	. 6623	1.5099	2. 511	3.047	600.42
25700	. 4371	6612	1.5124	2.521	3,062	600.22
25800	. 4355	6600	1.5152	2. 531	3.077	599.96
25900	. 4340	6588	1.5179	2. 541	3.092	599.69
26000	. 4324	. 6576	1.5207	2. 551	3.106	599.43
26100	. 4309	6565	1.5232	2. 561	3.121	599. 17
26200	. 4294	. 6553	1.5260	2. 572	3.137	598.97
26300	. 4278	. 6541	1. 5288	2.582	3.152	598.70
26400	. 4263	. 6530	1.5314	2. 592	3.167	598.44
26500	. 4248	. 6518	1.5342	2.602	3.182	598.17
26600	. 4233	. 6506	1.5370	2.613	3.198	597.91
26700	. 4218	. 6495	1.5396	2.623	3.214	597.71
26800	. 4203	. 6483	1.5425	2.634	3.229	597.45
26900	. 4188	. 6472	1. 5451	2.644	3.245	597.18

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ \text { (Feet) } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{a}} \\ (\mathrm{Hg}) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	1/d	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \left({ }^{\circ} \mathrm{K}\right) \end{gathered}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	$\stackrel{\theta}{T_{2} / \mathrm{T}_{a S L}}$	$\sqrt{\theta}$
27000	10.186	. 3398	2.942	234.68	15.319	. 8144	. 9024
22100	10.123	3383	2,955	234.48	15,313	8137	9020
27200	10.078	. 3368	2.968	234.27	15.306	. 8130	9017
27300	10.033	. 3353	2.982	234.07	15.299	. 8123	9013
27400	9.988	. 3338	2.995	233.87	15.293	8116	9009
27500	9.944	. 3323	3.008	233.67	15.286	8109	9005
27600	9.900	. 3308	3.022	233.47	15.280	. 8102	. 9001
27700	9.856	3294	3.035	233.29	15.274	8096	. 8998
27800	9.812	. 3279	3.049	233.09	15.267	. 8089	. 8994
27900	9.768	. 3264	3.063	232.89	15.261.	. 8082	. 8990
28000	9.724	. 3250	3.076	232.69	15.254	. 8075	. 8986
. 28100	9.681	. 3235	3.090	232.49	15.248	. 8068	. 8982
- 28200	9.638	. 3221	3.104	232.29	15.241	. 8061	. 8978
28300	9.595	. 3206	3.118	232.08	15.234	. 8054	. 8975
28400	9.552	, 3192	3.132	231.88	15,228	8047	8971
28500	9.509	3178	3.146	231.71	15.222	. 8041	8967
28600	9.466	. 3163	3.160	231.51	15.215	. 8034	. 8963
28700	9.424	. 3149	3, 175	231,31	15.209	8027	8959
28800	9.381	. 3135	3.189	231.10	15.202	. 8020	. 8955
28900	9.339	. 3121	3.203	230.90	15.195	. 8013	. 8952
29000	9.297	. 3107	3. 218	230.70	15.189	. 8006	. 8948
29100	9.255	. 3093	3.232	230.50	15.182	. 7999	8944
29200	9.213	. 3079	3.247	230.30	15.176	. 7992	8940
29300	9.172	. 3065	3.262	230.12	15.170	. 7986	. 8936
29400	9.130	3051	3.276	229.92	15.163	. 7979	8932
29500	9.089	. 3037	3.291	229.72	15.157	. 7972	. 8928
29600	9.048	. 3024	3.306	229.52	15.150	. 7965	. 8925
29700	9.007	. 3010	3.321	229.32	15.143	. 7958	8921
29800	8.966	2996	3.337	229.12	15.137	. 7951	. 8917
29900	8.925	. 2983	3.352	228.91	15.130	. 7944	. 8913
30000	8.885	. 2969	3.367	228.71	15.123	. 7937	. 8909
30100	8.845	. 2956	3.382	228.54	15.118	. 7931	. 8905
30200	8.804	. 2942	3.398	228.34	15.111	. 7924	. 8901
30300	8.764	. 2929	3.413	228.14	15.104	. 7917	. 8898
30400	8,724	. 2915	3. 429	227.93	15,098	. 7910	. 8894
30500	8.685	. 2902	3.445	227.73	15.091	. 7903	8890
30600	8.645	2889	3.460	227.53	15.084	. 7896	. 88886
30700	8.605	2876	3.476	227.33	15.077	. 7839	8882
30800	3.566	2863	3.492	227.13	15.071	. 7882	. 8878
30900	8.527	2849	3.508	226.95	15.065	. 7875	8874

TABLE 9.2

$\begin{gathered} \mathrm{H}_{c} \\ (\text { Feet }) \end{gathered}$	$\stackrel{\sigma}{\rho / \rho S L}$	$\sqrt{\pi}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{\theta}$	$\begin{gathered} \mathrm{a} \\ \text { (Kncts) } \end{gathered}$
27000	. 4173	. 6460	1.5480	2.655	3.260	596.92
27100	. 4157	. 6448	1. 5509	2.666	3.276	596.65
27200	. 4143	. 6437	1.5535	2. 477	3.292	596.45
27300	. 4128	. 6425	1. 5564	2.t37	3.308	596.19
27400	. 4113	. 6413	1. 5593	2.698	3.325	595.93
27500	. 4098	. 6402	1.5620	2.709	3.341	595.66
27600	. 4083	. 6390	1.5649	2.720	3.357	595.40
27700	. 4068	. 6379	1.5676	2.731	3.374	595.20
27800	. 4054	. 6367	1.5706	2.742	3.390	594.93
27900	. 4039	. 6356	1.5733	2.753	3.407	594.67
28000	. 4025	. 6344	1.5763	2.764	3.423	594.40
28100	4010	. 6333	1.5790	2.776	3.440	594.14
28200	. 3996	. 6321	1.5820	2.787	3.457	593.88
28300	. 3981	. 6310	1.5848	2.798	3.474	593.68
28400	. 3967	. 6298	1.5878	2.810	3.491	593.41
28500	. 3952	. 6287	1.5906	2.821	3.509	593.15
28600	. 3938	. 6276	1.5934	2.833	3.526	592.88
28700	. 3923	. 6264	1. 1.5964	2.844	3.543	592.62
28600	. 3909	. 6253	1.5992	2.856	3.561	592.35
28900	. 3895	. 6241	1.6023	2.867	3.579	592.16
29000	. 3881	. 6230	1.6051	2.879	3.596	591.89
29100	. 3867	. 6219	1.6080	2.891	3.614	591.62
29200	. 3853	. 6207	1.6111	2.903	3.632	591.35
29300	. 3838	. 6196	1.6139	2.915	3.650	591.09
29400	. 3824	. 6184	1.6171	2.927	3.668	590.82
29500	. 3810	. 6173	1.6200	2. 939	3.686	590.56
29600	. 3796	. 6162	1.6228	2.951	3.705	590.36
29700	. 3782	. 6150	1.6260	2,963	3.723	590.10
29800	. 3769	. 6139	1.6289	2.975	3.742	589.83
29900	. 3755	.6128	1.6319	2.987	3.761	589.57
30000	. 3741	.6117	1.5348	3.000	3.779	589.30
30100	. 3727	.6105	1.6380	3.012	3.798	589.05
30200	. 3713	. 6094	1.6410	3.024	3.817	588.78
30300	. 3700	. 6083	1.6439	3.037	3.837	588.58
30400	. 3686	. 6072	1.6469	3.050	3.856	588. 32
30500	. 3672	. 6060	1.6502	3.062	3.875	588.06
30600	. 3659	. 6049	1.6532	3.075	3.894	587.79
30700	. 3645	. 6038	1.6562	3.088	3.914	587.53
30800	. 3632	. 6027	1.6592	3.100	3.934	587.26
30900	. 3618	.6016	1.6622	3.113	3.953	587.00

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Fe} \text { (}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P a}_{\mathbf{a}} \\ (י \mathrm{Hg}) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	1/8	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ (\cdot \mathrm{~K}) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}_{2}}$	$\stackrel{\ominus}{\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{a} S \mathrm{~L}}}$	$\sqrt{\theta}$
31000	8.488	. 2836	3.524	226. 75	15.058	. 7869	. 8871
31100	8.449	. 2823	3.541	226. 55	15.052	7862	. 8867
31200	8.410	. 2810	3.557	226.35	15.045	. 7855	. 8863
31300	8.371	. 2798	3.573	226.15	15.038	. 7848	. 8859
31400	8.333	. 2785	3.590	225.95	15.032	. 7841	. 8855
31500	8.295	. 2772	3.607	225.74	15.025	. 7834	. 8851
31600	8.256	. 2759	3.623	225.54	15.018	. 7827	8847
31700	8,218	. 2746	3.640	225.37	15.012	. 7821	. 8843
31800	8.181	. 2734	3.657	225.17	15.006	. 7814	. 8839
31900	8.143	. 2721	3.674	224.97	14.999	. 7807	. 8836
32000	8.105	. 2709	3.691	224.76	14.992	. 7800	. 8832
32100	8.068	. 2696	3.708	224.56	14.985	. 7793	8828
32200	8.030	. 2684	3.725	224.36	14.979	. 7786	. 8824
32300	7.993	. 2671	3.743	224.16	14.972	. 7779	. 8820
32400	7.956	, 2659	3.760	223.96	14,965	, 7772	8816
32500	7.919	. 2646	3.778	223.79	14.959	. 7766	. 8812
32600	7.882	. 2634	3.795	223.58	14.953	. 7759	. 8808
32700	7,846	. 2622	3.813	223.38	14.946	. 7752	8804
32800	7.809	. 2610	3.831	223.18	14.939	. 7745	. 8801
32900	7.773	. 2597	3.849	222.98	14.932	. 7738	. 8797
33000	7.737	. 2585	3.867	222.78	14.926	. 7731	. 8793
33100	7.700	2573	3,885	222,57	14.919	. 7724	. 8789
33200	7.665	. 2561	3.903	222.37	14.912	. 7717	. 8785
33300	7.629	. 2549	3.922	222.20	14.906	. 7711	. 8781
33400	7.593	. 2537	3.940	222,00	14.900	7704	8777
33500	7.557	. 2525	3.958	221.80	14.893	. 7697	. 8773
33600	7.522	. 2514	3.977	221.60	14.886	. 6990	. 8769
33700	7.487	2502	3.996	221,39	14,879	. 7683	. 8765
33800	7.452	. 2490	4.015	221.19	14.873	. 7676	. 8761
33900	7.417	. 2478	4.034	220.99	14.866	. 7669	. 8757
34000	7.382	. 2467	4.053	220.79	14.859	. 7662	. 8754
34100	7.347	. 2455	4.072	220,62	14,853	. 7656	. 8750
342.00	7.312	. 2444	4.091	220.41	14.846	. 7649	8746
34300	7.278	2432	4.110	220.21	14.840	. 7642	. 8742
34400	7,244	. 2421	4.130	220.01	14,833	. 7635	8738
34500	7.209	2409	4.150	219.81	14.826	. 7628	. 8734
34600	7.175	2398	4.169	219.61	14.819	. 7621	. 8730
34700	7.141	2386	4. 189	219.41	14.812	. 7614	8726
34800	7.107	. 2375	4.209	219.20	14.806	. 7607	. 872.2
34900	7.074	. 2364	4.229	219.03	14.800	. 7601	. 8718

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathbf{c}} \\ \text { (Feet) } \end{gathered}$	$\stackrel{\sigma}{\rho / \sin ^{\sigma}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{\theta}$	$\begin{gathered} a \\ (\text { Knot }) \end{gathered}$
31000	. 3605	. 6004	1.6656	3.127	3.974	586.80
31100	. 3592	5993	1.6686	3.140	3.994	586.53
31200	. 3578	. 5982	1.6717	3.153	4.014	586.27
31300	. 3565	. 5971	1.6748	3.166	4.034	586.01
31400	. 3551	. 5960	1.6779	3.179	4.054	585.74
31500	. 3538	. 5949	1.6810	3.192	4.075	585.48
31600	. 3525	. 5938	1.6841	3.205	4.095	585.21
31700	. 3512	. 5926	1.6875	3.219	4.116	584. 05
31800	. 3499	. 5916	1.6903	3.232	4.137	584.68
31900	. 3485	. 5904	1.6938	3.246	4.158	584.48
32000	. 3473	. 5893	1.6969	3.260	4.180	584.22
32.100	. 3460	. 5882	1,7001	3.274	4.201	583.96
32200	. 3447	. 5871	1.7033	3.287	4.222	583.69
32300	. 3434	. 5860	1.7065	3.301	4. 244	583.43
32400	. 3421	. 5849	1.7097	3.315	4. 265	583.16
32500	. 3408	. 5838	1.7129	3.329	4.287	582.90
32600	. 3395	. 5827	1.7161	3.343	4. 309	582.63.
32700	. 3382	. 5816	1.7194	3.357	4.331	582.37
32800	. 3370	. 5805	1.7227	3.371	4.353	582,17
32900	. 3357	. 5794	1.7259	3,386	4.376	581.91
33000	. 3344	. 5783	1.7292	3.400	4.398	581.64
33100	. 3332	. 5772	1.7325	3.414	4.421	581.38
$3320 \sim$. 33119	. 5762	1.7355	3.429	4.443	581.11
3330 L	. 3306	. 5751	1.7388	3.443	4.466	580.85
33400	. 3294	. 5740	1.7422	3.458	4.489	580.58
33500	3281	. 5729	1.7455	3.473	4.512	580.32
33600	. 3269	. 5718	1.7489	3.487	4.535	580.05
33700	. 3256	. 5707	1.7522	3.502	4.559	579.79
33800	. 3244	. 5696	1.7556	3.517	4.582	579.52
33900	. 3232	. 5685	1.7590	3,532	4.606	579.26
34000	. 3219	. 5674	1.7624	3.548	4.630	579.06
34100	3207	. 5664	1. 7655	3. 563	4.654	578.80
34200	. 3195	. 5653	1.7690	3. 578	4.678	578.53
34300	3183	. 5642	1.7724	3.593	4.703	578.27
34400	. 3171	. 5631	1.7759	3.609	4.727	578.00
34500	. 3158	. 5620	1.7794	3.624	4.751	577.74
34600	. 3146	. 5610	1.7825	3.640	4.776	577.47
34700	. 3134	. 5599	1.7860	3.655	4.801	577.21
34800	3122	. 5588	1.7895	3.671	4.826	576.95
34900	. 3110	. 5577	1.7931	3.687	4.851	576.68

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Fe} \mathrm{e}) \end{gathered}$	$\begin{gathered} \mathbf{P a}_{\mathbf{a}} \\ \left.{ }^{\prime \prime \mathrm{Hg}}\right) \\ \hline \end{gathered}$	$\delta_{P_{a} / P_{a S L}}^{\delta}$	1/\%	$\begin{gathered} \cdot \Gamma_{\mathbf{a}} \\ (\cdot \mathbf{K}) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	$\stackrel{\theta}{T_{a} / T_{a S L}}$	$\sqrt{\theta}$
35000	7.040	. 2353	4.249	218.83	14.793	. 7594	. 8714
35100	7.007	. 2341	4,2:0	218.63	14.786	. 7587	8710
35200	6.973	2330	4.290	218.43	14.779	. 7580	8706
35300	6.940	. 2319	4.311	218.22	14.772	. 7573	. 8702
35400	6.907	. 2308	4.331	218.02	14.766	. 7566	8698
35500	6.874	. 2297	4.352	217.82	14.759	. 7559	. 8694
35600	6.841	. 2286	4.373	217.62	14.752	. 7552	. 8690
35700	6.809	2275	4.394	217.45	14.746	7546	8686
35800	6.776	. 2264	4.415	217.24	14.739	. 7539	8683
35900	6.744	. 2254	4.436	217.04	14.732	. 7532	. 8679
36000	6.711	. 2243	4.457	216.84	14.726	. 7525	8675
36100	6.679	. 2232	4.479	216.66	14.719	. 7512	8671
36200	6.647	. 2221	4.501	216.66	14.719	. 7519	. 8671
36300	6.615	. 2211	4.522	216.66	14.719	.7519	. 8671
36400	6.584	, 2200	4.544	216.66	14.719	7512	8671
36500	6.552	. 2189	4.566	216.66	14.719	. 7519	. 8671
36600	6.521	. 2179	4.588	216.66	14.719	. 7519	. 8671
36700	6.489	. 2168	4.610	216.66	14.719	. 7519	. 8671
36800	6.458	. 2158	4.632	216.66	14.719	. 7519	. 8671
36900	6.427	. 2148	4.655	216.66	14.719	. 7519	. 8671
37000	6.396	. 2137	4.677	216.66	14.719	. 7519	. 8671
37100	6.366	, 2127	4. 700	216.66	14.719	. 7519	. 8671
37200	6.335	. 2117	4.722	216.66	14.719	. 7519	. 8671
37300	6.305	. 2107	4.745	216.66	14.719	. 7519	. 8671
37400	6.274	2097	4. 768	216.66	14.719	. 7519	. 8671
37500	6.244	. 2087	4.791	216.66	14.719	. 7519	. 8671
37600	6.215	. 2077	4.814	216.66	14.719	. 7519	. 8671
37700	6.185	. 2067	4.837	216.66	14.719	. 7519	8671
37800	6.155	. 2057	4.861	216.65	14.719	. 7519	.8671
37900	6.125	. 2047	4.884	216.66	14.719	. 7519	8671
38000	6.096	. 2037	4.908	216.66	14.719	. 7519	. 8671
38100	6.067	. 2027	4.931	216.66	14.719	. 7519	. 8671
38200	6.038	. 20180	4.955	216.66	14.719	. 7519	8671
38300	6.009	. 20083	4.979	216.66	14.719	. 7519	8671
38400	5.980	. 19987	5.003	216.66	14.719	. 7519	8671
38500	5.951	. 19892	5.027	216.66	14.719	. 7519	8671
38600	5.923	. 19797	5.051	216.66	14.719	. 7519	. 8671
38700	5.894	. 19701	5.075	216.66	14.719	. 7519	. 8671
38800	5.866	. 19607	5.100	216.66	14.719	. 7519	8671
38900	5.838	. 19513	5.124	216.66	14.719	. 7519	. 8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\stackrel{\sigma}{\mathrm{\rho} / \mathrm{PSL}_{2}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / \delta \sqrt{\theta}$	$\begin{gathered} \mathrm{a} \\ \text { (Knots) } \end{gathered}$
35000	. 3098	. 5567	1.7963	3.703	4.877	576.42
35100	. 3086	. 5556	1.7999	3.719	4.902	576.15
35200	. 3075	5545	1.8034	3.735	4.928	575.89
35300	. 3063	5534	1.8070	3.751	4.953	575.62
35400	. 3051	. 5524	1.8103	3.767	4.979	575.36
35500	. 3039	. 5513	1.8139	3.783	5.005	575.09
35600	. 3027	5502	1.8175	3.800	5.032	574.83
35700	. 3016	5492	1.8208	3.816	5.058	574.57.
35800	. 3004	5481	1.8245	3.833	5.085	574.37
35900	. 2992	5471	1.8278	3.850	5.112	574.10
36000	. 2981	. 5460	1.8315	3.867	5.139	573.84
36100	. 2969	5449	1.8352	3.884	5.166	573,58
36200	. 2954	. 5436	1.8396	3.902	5.190	573.58
36300	. 2940	. 5423	1.8441	3.921	5.215	573.58
36400	. 2926	. 5410	1.8485	3.940	5. 240	573,58
36500	2912	5397	1.8530	3.959	5.266	573.58
36600	. 2898	5384	1.8574	3.978	5.291	573.58
36700	. 2884	. 5371	1.8619	3.997	5.317	573.58
36800	. 2870	. 5358	1.8664	4.017	5.342	573.58
36900	. 2857	. 5345	1.8709	4.036	5. 368	573.58
37000	. 2843	. 5332	1.8753	4.055	5.394	573.58
37100	, 2829	5319	1.8799	4.075	5.420	573.58
37200	. 2816	. 5307	1.8844	4.095	5.446	573.58
37300	. 2802	. 5294	1.8889	4.114	5.472	573.58
37400	. 2789	. 5281	1.8935	4.134	5.499	573.58
37500	. 2775	. 5269	1.8980	4.154	5.525	573.58
37600	. 2762	. 5256	1.9026	4.174	5.552	573.58
37700	. 2749	. 5243	1.9072	4.194	5. 579	573.58
37800	. 2736	5231	1.9117	4.215	5.605	573.58
37900	. 2723	5218	1.9164	4.235	5.632	573.58
38000	. 2709	5206	1.9210	4.255	5.660	573.58
38100	. 2697	5193	1.9256	4. 276	5.687	573.58
38200	. 2684	5181	1.9302	4.296	5.714	573.58
38300	. 2671	. 5168	1.9349	4.317	5.742	573.58
38400	2658	5156	1,9395	4,338	5.770	573,58
38500	2645	5144	1.9442	4.359	5.797	573.58
38600	. 2633	5131	1.9488	4.380	5.825	573.58
38700	. 2620	5119	1.9535	4.401	5,853	573.58
38800	. 2607	. 5107	1.9583	4.422	5.881	573.58
38900	. 2595	. 5094	1.9630	4.443	5.910	573.58

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ \text { (Feet) } \end{gathered}$	$\begin{gathered} P_{a} \\ \left(1 \mathrm{Hg}_{g}\right) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	1/6	$\begin{gathered} \mathrm{T}_{\mathbf{a}} \\ \left({ }^{\bullet} \mathrm{K}\right) \\ \hline \end{gathered}$	$\sqrt{T_{a}}$	$\stackrel{\theta}{T_{2} / T_{a S L}}$	$\sqrt{0}$
39000	5.810	.19419	5.149	216.66	14.719	. 7519	. 8671
39100	5.782	. 19326	5.174	216.66	14.719	7519	8671
39200	5.754	.19233	5.199	216.66	14.719	. 7519	. 8671
39300	5.727	. 19142	5.224	216.66	14.719	. 7519	. 8671
39400	5.699	. 19049	5.249	216.66	14.719	. 7519	. 8671
39500	5.672	. 18958	5.274	216.66	14.719	. 7519	. 8671
39,600	5.645	. 18868	5.300	216.66	14.719	. 7519	. 8671
39700	5.618	. 18776	5.325	216.66	14.719	. 7519	. 8671
39800	5.591	. 18687	5.351	216.66	14.719	. 7519	. 8671
39900	5.564	.18597	5.377	216.66	14.719	. 7519	. 8671
40000	5.537	.18508	5.403	216.66	14.719	.7519	. 8671
40100	5,511	.18419	5.429	216.66	14.719	. 7519	. 8671
40200	5.484	. 18331	5.455	216.66	14.719	. 7519	. 8671
40300	5.458	.18243	5.481	216.66	14.719	. 7519	. 8671
40400	5.432	. 18155	5.508	216.66	14.719	.7519	. 8671
40500	5.406	. 18068	5.534	216.66	14.719	. 7519	. 8671
40600	5.380	. 1.7982	5.561	216.66	14.719	. 7519	. 8671
40700	5.354	. 17896	5.587	216.66	14.719	. 7519	. 8671
40800	5.328	.17810	5.614	216.66	14.719	. 7519	. 8671
40900	5.303	.17724	5.642	216.66	14.719	. 7519	. 8671
41000	5.278	.17640	5.668	216.66	14.719	. 7519	. 8671
41100	5. 252	.17555	5.696	216.66	14.719	. 7519	. 8671
41200	5.227	. 17471	5.723	216.66	14.719	. 7519	. 8671
41300	5.202	.17387	5.751	216.66	14.719	. 7519	. 8671
41400	5,177	.17303	5.779	216.66	14.719	. 7519	. 8671
41500	5.152	. 17221	5.806	216.66	14.719	. 7519	. 8671
41600	5.127	.17138	5.835	216.66	14.719	. 7519	. 8671
41700	5,103	. 17056	5.863	216.66	14.719	. 7519	. 8671
41800	5.079	. 16974	5.891	216.66	14.719	. 7519	. 8671
41900	5.054	.16893	5.919	216.66	14.719	. 7519	. 8671
42000	5.030	.16812	5.948	216.66	14.719	. 7519	. 8671
42100	5.006	. 16731	5.976	216.66	14.719	. 7519	. 8671
42200	4.982	. 16651	6.005	216.66	14.719	. 7519	.8671
42300	4.958	. 16571	6.034	216.66	14.719	.7519	. 8671
42400	4,934	. 16492	6,063	216,66	14.719	. 7519	. 8671
42500	4.910	. 16412	6.093	216.66	14.719	. 7519	.8671
42600	4,887	. 16334	6.122	216.66	14.719	. 7519	.8671
42700	4.863	16255	6.152	216.66	14.719	. 7519	. 8671
42800	4.840	. 16178	6.181	216.66	14.719	. 7519	. 8671
42900	4.817	.16100	6.211	216.86	14.719	. 7519	. 8671

TABLE. 9.2

$\begin{gathered} \mathbf{H}_{\mathbf{C}} \\ (\text { Feet }) \end{gathered}$	$\stackrel{\sigma}{\mathrm{p} / \mathrm{esL}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 818$	(Knots)
39000	2582	. 5082	1.9677	4.465	5.938	573.58
39100	. 2570	5070	1.9724	4.486	5.967	573.58
39200	. 2558	. 5058	1.9772	4.508	5.996	573.58
39300	. 2545	. 5046	1.9819	4.529	6.024	573.58
39400	. 2533	. 5033	1,9867	4. 551	6.054	573.58
39500	. 2521	. 5021	1.9915	4.573	6.083	573.58
39600	. 2509	. 5009	1.9962	4.595	6.112	573.58
39700	, 2497	4997	2.0011	4.618	6.142	573.58
39800	. 2485	. 4985	2.0059	4.640	6.171	573.58
39900	. 2473	. 4973	2.0107	4.662	6.201	573.58
40000	. 2461	. 4961	2.0155	4.685	6.231	573.58
40100	. 2449	4949	2.0204	4,707	6.261	573.58
40200	. 2438	. 4938	2.0253	4.730	6.291	573.58
40300	. 2426	. 4926	2.0301	4.753	6.321	573.58
40400	. 2414	. 4914	2.0350	4.776	6.352	573.58
40500	. 2403	. 4902	2.0399	4.799	6.382	573.58
40600	. 2391	. 4890	2.0448	4.822	6.413	573.58
40700	. 2380	. 4879	2.0497	4,845	6.444	573.58
40800	. 2368	. 4867	2.0547	4.868	6.475	573.58
40900	. 2357	. 4855	2.0596	4.892	6.506	573.58
41000	. 2346	. 4844	2.0646	4.915	6.537	573.58
41100	. 2334	. 4832	2.0695	4.939	6.569	573,58
41200	. 2323	. 4820	2,0745	4.963	6.600	573.58
41300	. 2312	. 4809	2.0795	4.987	6.632	573.58
41400	. 2301	. 4797	2.0845	5.011	6.664	573.58
41500	. 2290	. 4786	2.0895	5.035	6.696	573.58
41600	. 2279	. 4774	2.0946	5.059	6.729	573.58
41700	. 2268	.4763	2.0996	5. 083	6.761	573,58
41800	. 2257	. 4751	2.1046	5.108	6.794	573.58
41900	. 2246	. 4740	2.1097	5.132	6.826	573.58
42000	. 2236	. 4729	2.1148	5.157	6.859	573.58
42100	. 2225	4717	2,1199	5.182	6.892	573.58
42200	. 2214	. 4706	2.1250	5. 207	6.926	573.58
42300	. 2204	. 4695	2.1301	5.232	6.959	573.58
42400	. 2193	. 4683	2.1352	5. 257	6.992	573.58
42500	. 2182	. 4672	2.1404	5. 283	7.026	573.58
42600	. 2172	. 4661	2.1455	5.308	7.060	573.58
42700	. 2162	. 4650	2. 1507	5.334	7.094	573.58
42800	. 2151	. 4639	2.1558	5.359	7.128	573.58
42900	. 2141	. 4627	2.1610	5. 385	7.163	573.58

TABLE 9.3

$\begin{gathered} \mathrm{H}_{c} \\ \text { (Feet) } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P a} \mathbf{a} \\ (' \mathrm{Hg}) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ \mathrm{Pa}_{\mathrm{a}} / \mathrm{P}_{\mathrm{aSL}} \end{gathered}$	1/6	$\begin{gathered} \mathrm{T}_{\mathbf{a}} \\ \left({ }^{\bullet} \mathrm{K}\right) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}_{a}}$	$\stackrel{\theta}{\mathrm{T}_{2} / \mathrm{T}_{\mathrm{a} L}}$	$\sqrt{\theta}$
43000	4.794	. 16023	6.241	216.66	14.719	. 7519	8671
43100	4.771	. 15946	6.271	216.66	14.719	.7519	8671
43200	4.748	. 15870	6.301	216.66	14.719	. 7519	8671
43300	4.725	. 15794	6.331	216.66	14.719	. 7519	8671
43400	4. 702	. 15718	6.362	216,66	14.719	. 7519	8671
43500	4.680	. 15642	6.393	216.66	14.719	. 7519	8671
43600	4.657	. 15567	6.423	216.66	14.719	. 7519	8671
43700	4.635	. 15492	6.454	216.66	14.719	7519	8671
43800	4.613	. 15418	6.485	216.66	14.719	. 7519	8671
43900	4.591	. 15345	6.516	216.66	14.719	. 7519	8671
44000	4.569	. 15271	6.548	216.66	14.719	. 7519	. 8671
44100	4.547	. 15198	6.579	216.66	14.719	. 7519	8671
44200	4.525	. 15125	6.611	216.66	14.719	. 7519	. 8671
44300	4.503	. 15053	6.643	216.66	14.719	. 7519	. 8671
44400	4.482	. 14980	6.675	216.66	14.719	. 7519	. 8671
44500	4.460	. 14908	6.707	216.66	14.719	. 7519	. 8671
44600	4.439	. 14837	6.739	216.66	14.719	. 7519	. 8671
44700	4.418	. 14766	6.772	216.66	14.719	. 7519	. 8671
44800	4.397	. 14695	6.805	216.66	14.719	. 7519	. 8671
44900	4.375	. 14624	6.838	216.66	14.719	. 7519	. 8671
45000	4.354	. 14554	6.871	216.66	14.719	. 7519	8671
45100	4,334	14485	6.903	216,66	14.719	. 7519	8671
4.2 ± 0	4.313	. 14415	6.937	216.66	14.719	. 7519	. 8671
45300	4.292	. 14346	6.970	216.66	14.719	. 7519	. 8671
45400	4.271	. 14277	7.004	216.66	14.719	. 7519	. 8671
45500	4.251	. 14208	7.038	216.66	14.719	. 7519	8671
45600	4.231	. 14141	7.071	216.66	14.719	. 7519	. 8671
45700	4.210	. 14073	7.105	216.66	14,719	7519	8671
45800	4.190	. 14005	7.140	216.66	14.719	. 7519	8671
45900	4.170	. 13938	7.174	216.66	14.719	. 7519	. 8671
46000	4.150	. 13871	7.209	216.66	14.719	. 7519	. 8671
46100	4.130	. 13805	7.243	216.66	14.719	. 7519	8671
46200	4.110	. 13739	7.278	216.66	14.719	. 7519	. 8671
46300	4.091	. 13672	7.314	216.66	14.719	. 7519	. 8671
46400	4.071	. 13607	7.349	216.66	14.719	. 7519	. 8671
46500	4.051	. 13542	7.384	216.66	14.719	. 7519	. 8671
46600	4.032	. 13477	7.420	216.66	14.719	. 7519	. 8671
46700	4.013	. 13412	7.456	216.66	14.719	. 7519	8671
46800	3.993	. 13348	7.491	216.66	14.719	. 7519	. 8671
46900	3.974	. 13284	7.527	216.66	14.719	. 7519	. 8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \end{gathered}$	$\stackrel{\sigma}{\rho / \mathrm{PSL}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{\theta}$	a (Knots)
43000	. 2131	. 4616	2.1662	5.411	7.197	573.58
43100	. 2120	. 4605	2.1715	5.437	7.232	573.58
43200	.2110	. 4594	2.1767	5.463	7.266	573.58
43300	. 2100	. 4583	2.1819	5.490	7.301	573.58
43400	. 2090	4572	2.1872	5.516	7.337	573.58
43500	. 2080	. 4561	2.1924	5.543	7.372	573.58
43600	. 2070	. 4550	2.1977	5.570	7.408	573.58
43700	. 2060	. 4539	2. 2030	5.597	7.444	573.58
43800	. 2050	. 4528	2.2083	5.623	7.479	573.58
43900	. 2040	. 4518	2.2136	5.650	7.515	573.58
44000	. 20310	. 4507	2.2189	5.678	7.551	573.58
44100	20213	4496	2.2242	5.705	7.588	573,58
44200	20117	4485	2.2296	5.732	7.624	573.58
44300	. 20020	. 4474	2.2349	5. 760	7.661	573.58
44400	. 19924	4464	2, 2403	5,788	7.698	573. 58
44500	. 19828	. 4453	2.2457	5.816	7.735	573.58
44600	. 19733	. 4442	2.2511	5.844	7.772	573.58
44700	. 19639	. 4432	2. 2566	5.872	7.810	573.58
44800	. 19545	. 4421	2.2620	5.900	7.847	573.58
44900	. 19451	. 4410	2. 2674	5.929	7.886	573.58
45000	. 19358	. 4400	2.2729	5.957	7.923	573.58
45100	. 12265	. 4389	2. 2783	5.986	7.961	573.58
45200	. 19173	. 4379	2.2838	6.015	8.000	573.58
45300	. 19080	. 4368	2.2893	6.044	8.038	573.58
45400	18989	43.58	2, 2948	6.073	8.077	573.58
45500	. 18897	. 4347	2.3004	6.102	8.116	573.58
45600	. 18807	. 4337	2.3059	6.131	8.155	573.58
45700	. 18717	. 4326	2,3114	6,161	8.194	573.58
45800	. 18627	. 4316	2.3170	6.191	8.234	573.58
45900	. 18538	. 4306	2.3226	6.221	8.274	573.58
46000	. 18449	. 4295	2.3282	6.251	8.314	573.58
46100	. 18360	. 4285	2.3338	6.281	8.353	573.58
46200	. 18273	. 4275	2.3394	6.311	8.394	573.58
46300	. 18184	. 4264	2.3450	6.342	8.435	573.58
46400	. 18098	. 4254	2.3507	6.372	8.475	573.58
46500	. 18011	. 4244	2.3563	6.403	8.516	573.58
46600	. 17924	. 4234	2.3620	6.433	8.557	573.58
46700	17839	-4224	2, 3677	6.465	8,598	573,58
46800	. 17753	. 4213	2.3734	6.496	8.639	573.58
46900	. 17668	. 4203	2.3791	6.527	8.681	573.58

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pa}_{\mathrm{a}} \\ (1 \mathrm{Hg}) \\ \hline \end{gathered}$	$\delta_{\mathrm{Pa}_{\mathrm{a}} / \mathrm{P}_{\mathrm{aSL}}}$	1/8	$\begin{gathered} T_{a} \\ (\cdot \mathrm{~K}) \\ \hline \end{gathered}$	$\sqrt{T_{a}}$	$\stackrel{\theta}{\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{aSL}}}$	$\sqrt{\theta}$
47000	3.955	. 13221	7.563	216.66	14.719	. 7519	8671
47100	3.936	. 13157	7.600	216.66	14.719	. 7519	. 8671
47200	3.917	. 13094	7.637	216.66	14.719	. 7519	. 8671
47300	3.899	. 13031	7.674	216.66	14.719	. 7519	. 8671
47400	3.880	12969	7.710	216.66	14.719	7519	8671
47500	3.861	. 12907	7.747	216.66	14.719	. 7519	8671
47600	3.843	. 12845	7.785	216.66	14.719	. 7519	8671
47700	3.824	. 12783	7.822	216.66	14.719	7519	8671
47800	3.806	. 12722	7.860	216.66	14.719	. 7519	. 8671
47900	3.783	. 12660	7.898	216.66	14.719	. 7519	. 8671
48000	3.770	. 12600	7.936	216.66	14.719	. 7519	. 8671
48100	3.752	. 12540	7.974	216.66	14.719	. 7519	8671
48200	3.734	. 12480	8.012	216.66	14.719	. 7519	. 8671
48300	3.716	. 12419	8.052	216.66	14.719	. 7519	. 8671
48400	3.698	. 12360	8.090	216.66	14.719	7519	8671
48500	3.680	. 12301	8.129	216.66	14.719	. 7519	8671
48600	3.662	. $1: 242$	8.168	216.66	14.719	. 7514	8671
48700	3.645	. 12183	8.208	216.66	14.719	. 7519	8671
48800	3.627	. 12125	8.247	216.66	14.719	. 7519	8671
48900	3.610	. 12067	8.287	216.66	14.719	. 7519	. 8671
49000	3.593	. 12009	8.327	216.66	14.719	. 7519	. 8671
49100	3.576	. 11951	8.367	216.66	14.719	. 7519	8671
49200	3.558	. 11894	8.407	216.66	14.719	. 7519	. 8671
49300	3.541	. 11837	8.448	216.66	14.719	. 7519	. 8671
49400	3.524	. 11780	8.489	216.66	14.719	. 7519	. 8671
49500	3.507	. 11724	8.529	216.66	14.719	. 7519	8671
49600	3.491	. 11668	8.570	216.66	14.719	. 7519	8671
49700	3.474	. 11611	8.612	216.66	14.719	. 7519	. 8671
49800	3.457	. 11556	8.653	216.66	14.719	. 7519	. 8671
49900	3.441	. 11500	8.695	216.66	14.719	. 7519	. 8671
50000	3.424	. 11445	8.737	216.66	14.719	. 7519	. 8671
50100	3.408	. 11390	8.779	216.66	14.719	. 7519	8671
50200	3.391	. 11336	8.821	216.66	14.719	. 7519	8671
50300	3.375	. 11281	8.864	216.66	14.719	. 7519	8671
50400	3.359	. 11227	8.907	216.66	14.719	. 7519	8671
50500	3.343	. 11173	8.950	216.66	14.719	. 7519	8671
50600	3.327	. 11120	8.992	216.66	14.719	. 7519	8671
50700	3.311	. 11067	9.035	216.66	14.719	. 7519	8671
50800	3.295	. 11014	9.079	216.66	14.719	. 7519	. 8671
50900	3.279	. 10961	9.123	216.66	14.719	. 7519	. 8671

TABLE 9.2

(F'eet)	$\stackrel{\sigma}{\mathrm{p} / \mathrm{eSI}_{1}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / \delta \sqrt{\theta}$	$\begin{gathered} a \\ \text { (Knots) } \end{gathered}$
47000	.17584	. 4193	2.3848	6.558	8.722	573.58
47100	. 17499	. 4183	2.3905	6.590	8.765	573.58
47200	. 17415	. 4173	2.3963	6.622	8.807	573.58
47300	.17331	. 4163	2. 4021	6.654	8.850	573.58
47400	. 17249	. 4153	2. 4078	6.685	8.892	573.58
47500	.17166	. 4143	2.4136	6.718	8.935	573.58
47600	. 17084	. 4133	2.4194	6.750	8.978	573.58
47700	.17002	4123	2.4252	6.783	9.021	573.58
47800	.16920	. 4113	2.4311	6.815	9.065	573.58
47900	. 16839	. 4103	2.4370	6.849	9.109	573.58
'48000	. 16758	. 4094	2.4428	6.881	9.152	573.58
48100	. 16678	. 4084	2. 4487	6.914	9.196	573.58
48200	. 16598	. 4074	2.4546	6.947	9.240	573.58
48300	. 16518	. 4064	2. 4605	6.982	9.286	573.58
48400	. 16439	. 4054	2. 4664	7.015	9.330	573.58
48500	. 16360	. 4045	2. 4723	7.049	9.375	573.58
48600	. 16282	. 4035	2. 4783	7.083	9.420	573.58
48700	. 16204	. 4025	2.4842	7.117	9.466	573.58
48800	.16126	. 4016	2. 4902	7.151	9.511	573.58
48900	. 16049	. 4006	2.4962	7.185	9.557	573.58
49000	.15972	. 3996	2. 5022	7.220	9.603	573.58
49100	. 15895	. 3987	2. 5082	7.255	9.649	573.58
49200	. 15819	. 3977	2.5143	7.290	9.696	573.58
49300	. 15743	. 3968	2. 5203	7.325	9.742	573.58
49400	. 15668	. 3958	2. 5264	7.360	9.799	573.58
49500	. 15593	. 3949	2.5325	7.395	9.836	573.58
49600	. 15518	. 3939	2.5385	7.431	9.883	573.58
49700	. 15443	. 3930	2. 5447	7.467	9.932	573.58
49800	. 15369	. 3920	2. 5508	7.503	9.979	573.58
49900	. 15295	. 3911	2. 5570	7.540	10.028	573.58
50000	. 15222	. 3902	2. 5631	7.576	10.076	573.58
50100	. 15149	. 3892	2. 5692	7.612	10.125	573.58
50200	. 15077	. 3883	2.5754	7.649	10.173	573.58
50300	. 15004	. 3874	2.5816	7.686	10.222	573.58
50400	. 14932	. 3864	2.5879	7.723	10.272	573.58
50500	. 14861	. 3855	2.5941	7.760	10.321	573.58
50600	. 14789	. 3846	2.6003	7.797	10.371	573.58
50700	. 14719	. 3837	2. 6065	7.835	10.420	573.58
50800	. 14648	. 3827	2.6128	7.872	10.470	573.58
50900	.14578	. 3818	2.6191	7.910	10.521	573.58

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Feet}) \end{gathered}$	$\begin{gathered} \mathbf{P a}_{\mathbf{a}} \\ (1 \mathrm{Hg}) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ P_{\mathrm{a}} / P_{\mathrm{aSL}} \end{gathered}$	1/8	$\begin{gathered} \mathrm{T}_{\mathbf{a}} \\ (\bullet \underset{\mathrm{K}}{\mathrm{~K}}) \end{gathered}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	$\stackrel{\theta}{\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{aSL}}}$	$\sqrt{\theta}$
51000	3.263	. 10908	9.167	216.66	14.719	. 7519	. 8671
51100	3. 248	. 10856	9.211	216.66	14.719	7519	. 8671
51200	3.232	. 10804	9.255	216.66	14.719	. 7519	8671
51300	3.217	. 10752	9.300	216.66	14.719	. 7519	. 8671
51400	3.201	. 10700	9.345	216.66	14.719	7519	8671
51500	3.186	. 10649	9.390	216.66	14.719	. 7519	. 8671
51600	3.171	. 10598	9.435	216.66	14.719	. 7519	. 8671
51700	3.155	. 10547	9.481	216.66	14.719	. 7519	. 8671
51800	3.140	. 10497	9.526	216.66	14.719	. 7519	. 8671
51900	3.125	. 10446	9.573	216.66	14.719	. 7519	8671
52000	3.110	. 10396	9.619	216.66	14.719	. 7519	. 8671
52100	3.095	. 10347	9.664	216.66	14.719	. 7519	8671
52200	3.080	. 10297	9.711	216.66	14.719	. 7519	8671
52300	3.066	. 10247	9.759	216.66	14.719	. 7519	. 8671
52400	3,051	10198	9.805	216,66	14.719	7519	8671
52500	3.036	. 10149	9.853	216.66	14.719	. 7519	. 8671
52600	3.022	.10101	9.900	216.66	14.719	. 7519	8671
52700	3.007	. 10052	9.948	216,66	14.719	. 7519	8671
52800	2.993	. 10004	9.996	216.66	14.719	. 7519	. 8671
52900	2.979	. 09956	10.044	216.66	14.719	. 7519	. 8671
53000	2.964	. 09908	10.092	216.66	14.719	. 7519	. 8671
53100	2.950	. 09861	10.141	216.66	14.719	. 7519	8671
53200	2.936	. 09813	10.190	216.66	14.719	. 7519	. 8671
53300	2.922	. 09766	10.239	216.66	14.719	. 7519	. 8671
53400	2.908	. 09719	10.289	216.66	14.719	. 7519	8671
53500	2.894	. 09673	10.338	216.66	14.719	. 7519	8671
53600	2.880	. 09627	10.387	216.66	14.719	. 7519	. 8671
53700	2.866	. 09581	10.437	216.66	14.719	. 7519	. 8671
53800	2.852	. 09535	10.487	216.66	14.719	. 7519	. 8671
53900	2.839	. 09489	10.538	216.66	14.719	. 7519	. 8671
54000	2.825	. 09443	10.589	216.66	14.719	. 7519	. 8671
54100	2, 812	. 09398	10,640	216. 66	14.719	. 7519	8671
54200	2.798	. 09353	10.691	216.66	14.719	. 7519	. 8671
54300	2.785	. 09308	10.743	216.66	14.719	. 7519	. 8671
54400	2.771	. 09264	10.794	216.66	14.719	7519	8671
54500	2.758	. 09219	10.847	216.66	14.719	. 7519	. 8671
54600	2.745	. 09175	10.899	216.66	14.719	. 7519	. 8671
54700	2.732	. 09131	10.951	216.66	14.719	. 7519	8671
54800	2.719	. 09087	11.004	216.66	14.719	. 7519	. 8671
54900	2.706	. 09044	11.057	216.66	14.719	. 7519	. 8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Fe} \mathrm{et}) \end{gathered}$	$\rho / P S L$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{\theta}$	$\begin{gathered} a \\ (\text { Knot } s) \end{gathered}$
51000	. 14508	. 3809	2.6254	7.949	10.572	573.58
51100	. 14439	. 3800	2.6317	7.987	10.623	573.58
51200	. 14369	3791	2.6381	8.025	10.674	573.58
51300	. 14300	3782	2.6444	8.064	10.725	573.58
51400	. 14231	. 3772	2.6568	8.103	10.773	573.58
51500	. 14164	. 3763	2.6571	8.142	10.829	573.58
51600	. 14096	. 3754	2.6635	8.181	10.831	573.58
51700	. 14023	3745	2.6700	8.221	10.934	573.58
51800	. 13961	3735	2.6764	8.260	10.986	573.58
51900	. 13394	. 3727	2.6828	8.300	11.040	573.58
52000	. 13827	. 3719	2.6893	8.340	11.093	573.58
52100	. 13761	. 3710	2.6957	8.380	11.145	573.58
52200	. 13695	. 3701	2.7022	8.420	11.199	573.58
52300	. 13629	. 3692	2.7088	8.462	11.254	573.58
52400	. 13564	. 3683	2. 7152	8.502	11.308	573.58
52500	. 13499	. 3674	2.7218	8.543	11.363	573.58
52600	. 13434	. 3665	2. 7283	8.584	11.417	573.58
52700	. 13370	. 3656	2.7349	8.626	11.472	573.58
52800	. 13306	. 3648	2.7415	8.667	11.527	573.58
52900	. 13242	. 3639	2.7481	8.709	11.583	573.58
53000	. 13178	. 3630	2.7547	8.751	11.639	573.58
53100	. 13115	. 3621	2.7613	8.793	11.695	573.58
53200	. 13052	. 3613	2.7680	8.836	11.752	573.58
53300	. 12989	3604	2.7746	8.878	11.808	573.58
53400	. 12927	. 3595	2.7813	8.921	11.865	573.58
53500	. 12865	. 3587	2.7880	8.964	11.922	573.58
53600	. 12803	. 3578	2.7947	9.007	11.979	573.58
53700	. 12743	3570	2.8014	9.050	12.036	573.58
53800	. 12681	. 3561	2.8082	9.093	12.094	573.58
53900	. 12620	3552	2.8149	9.137	12.153	573.58
54000	. 12560	. 3544	2.8217	9.182	12.212	573.58
54100	12500	. 3536	2.8285	9.226	12.271	573.58
54200	. 12440	. 3527	2.8353	9.270	12.330	573.58
54300	. 12380	. 3518	2.8421	9.315	12.389	573.58
54400	. 12321	. 3510	2.8489	9.359	12.448	573.58
54500	. 12261	. 3502	2.8558	9.405	12.509	573.58
54600	. 12203	3493	2.8627	9.450	12.569	573.58
54700	12144	3485	2.8695	9.496	12.630	573.58
54800	12086	. 3477	2.8765	9.542	12.691	573.58
54900	. 12028	. 3468	2.8834	9.587	12.751	573.58

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\text { Feet }) \end{gathered}$	$\begin{gathered} \mathbf{P a}_{\mathbf{a}} \\ \left({ }^{\prime \prime} \mathrm{Hg}\right) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	1/6	$\begin{gathered} \mathrm{T}_{\mathbf{a}} \\ (\cdot \mathrm{K}) \end{gathered}$	$\sqrt{T_{a}}$	$\stackrel{\theta}{\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{aSL}}}$	$\sqrt{\theta}$
55000	2.693	. 09000	11.111	216.66	14.719	. 7519	8671
55100	2. 680	08957	11.164	216.66	14.719	7519	8671
55200	2.667	. 03914	11.218	216.66	14.719	. 7519	8671
55300	2. 654	. 08871	11.272	216.66	14.719	. 7519	8671
55400	2. 641	. 08829	11.326	216.66	14.719	. 7519	. 8671
55500	2.629	. 08787	11.380	216.66	14.719	. 7519	. 8671
55600	2.616	. 08745	11.435	216.66	14.719	. 7519	. 8671
55700	2.603	. 08702	11.491	216.66	14.719	. 7519	8671
55800	2.591	. 080661	11.546	216.66	14.719	. 7519	8671
55900	2. 578	. 08619	11.602	216.66	14.719	. 7519	8671
56000	2. 566	. 08578	11.657	216.66	14.719	. 7519	8671
56100	2. 554	.08537	11.713	216.66	14.719	. 7519	8671
56200	2.542	. 08496	11:770	216.66	14.719	. 7519	8671
56300	2. 529	. 08455	11.827	216.66	14.719	. 7519	8671
56400	2.517	08415	11.883	216.60	14.719	. 7519	8671
56500	2. 505	08374	11.941	216.66	14.719	. 7519	8671
56600	2.493	. 08334	11.999	216.66	14.719	. 7519	8671
56700	2. 481	. 08294	12.056	216.66	14.719	.7519	8671
56800	2.469	. 08254	12.115	216.66	14.719	. 7519	8671
56900	2. 458	.08215	12.172	216.66	14.719	. 7519	8671
57000	2.446	.08175	12.232	216.66	14.719	. 7519	8671
57100	2. 434	. 08136	12.291	216.66	14.719	. 7519	. 8671
57200	2.422	. 08097	12.350	216.66	14.719	. 7519	. 8671
57300	2.411	. 08058	12.410	216.66	14.719	. 7519	.8671
57400	2.399	. 08020	12.468	216.66	14.719	. 7519	. 8671
57500	2.388	. 07981	12.529	216.66	14.719	. 7519	. 8671
57600	2.376	. 07943	12.589	216.66	14.719	. 7519	. 8671
57700	2. 365	. 07905	12.650	210.66	14.719	7519	3671
57300	2.353	.07867	12.711	216.66	14.719	. 7519	8671
57900	2.342	. 07829	12.773	216.66	14.719	. 7519	8671
58000	2.331	. 07792	12.833	216.66	14.719	. 7519	. 8671
58100	2, 320	. 07754	12.896	216.66	14.719	. 7519	. 8671
58200	2.309	. 07717	12.958	216.66	14.719	. 7519	8671
53300	2.298	. 07680	13.020	216.66	14.719	. 7519	. 8671
58400	2.287	.07643	13.083	216.66	14.719	. 7519	.8671
58500	2.276	. 07607	13.145	216.66	14.719	. 7519	8671
58600	2. 265	. 07570	13.210	216.66	14.719	. 7519	8671
58700	2. 254	. 07534	13.273	216.66	14.719	. 7519	8671
50800	2. 243	. 07498	13.336	216.66	14.719	. 7519	. 8671
58900	2.232	. 07462	13.401	216.66	14.719	. 751 S	. 8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \end{gathered}$	$\stackrel{\sigma}{\mathrm{p} / \mathrm{PSL}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / d \sqrt{6}$	$\begin{gathered} \mathrm{a} \\ \text { (Knots) } \end{gathered}$
55000	. 11971	. 3460	2.8903	9.634	12.813	573.58
55100	11913	. 3452	2.8973	9.680	12.875	573.58
55200	. 11856	. 3443	2.9042	9.727	12.937	573.58
55300	. 11799	. 3435	2.9112	9.774	13.000	573.58
55400	11743	. 3427	2.9182	9.821	13.062	573.58
55500	11636	. 3419	2.9252	9.867	13.124	573.58
55600	. 11630	. 3410	2.9323	9.915	13.187	573.58
55700	. 11574	. 3402	2.9394	9.964	13.252	573.58
55800	. 11519	. 3394	2.9464	10.011	13.315	573.58
55900	. 11463	. 3386	2.9535	10.060	13.380	573.58
56000	. 11409	. 3378	2.9606	10.108	13.444	573.58
56100	. 11354	3370	2.9678	10.156	13.508	573.58
56200	. 11299	. 3361	2.9749	10.205	13.573	573.58
56300	. 11245	. 3353	2.9820	10.255	13.639	573.58
56400	11192	3345	2.9892	10.304	13.704	573,58
56500	. 11138	3337	2.9964	10.354	13.771	573.58
56600	. 11085	. 3329	3.0036	10.404	13.837	573.58
56700	11031	. 3321	3.0108	10.454	13.904	573. 58
56800	. 10978	. 3313	3.0181	10.505	13.972	573.58
56900	. 10926	3305	3.0253	10.555	14.038	573.58
57000	. 10873	3297	3.0327	10.606	14.107	573.58
57100	. 10821	3290	3.0399	10.657	14.174	573.58
57200	. 10769	3282	3.0472	10.708	14.242	573.58
57300	. 10718	3274	3.0546	10.760	14.311	573.58
57400	. 10666	3266	3.0619	10.811	14.379	573.58
57500	. 10615	. 3258	3.0693	10.864	14.450	573.58
57600	. 10564	. 3250	3.0767	10.916	14.519	573.58
57700	. 10514	. 3242	3.0841	10.969	14.588	573. 58
57800	. 10463	. 3235	3.0915	11.022	14.659	573.58
57900	. 10413	. 3227	3.0989	11.075	14.730	573.58
58000	. 10363	. 3219	3.1064	11.128	14.800	573.58
58100	. 10313	. 3211	3.1139	11.182	14.872	573.58
$\overline{3200}$. 10264	3204	3.1214	11.236	14.944	573.58
58300	. 10215	. 3196	3.1289	$11 . .290$	15.016	573.58
58400	. 10156	. 3188	3.1': 4	11.345	15.088	573.58
58500	. 10117	. 3181	3.140	11.398	15.160	573.58
58600	. 10068	. 3173	3.1515	11.454	15. 234	573.58
58700	10020	. 3165	3.1591	11.509	15.307	573.58
58800	. 09972	. 3158	3.1667	11.564	15.380	573.58
58900	. 69924	. 3150	3.1743	11.620	15.454	573.58

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{a}} \\ \left({ }^{(1 \mathrm{Hg})}\right. \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	1/8	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \left({ }^{\circ} \mathrm{K}\right) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}}$	$\stackrel{{ }_{\mathrm{I}}^{\mathrm{a}}}{\mathrm{~T}} \mathrm{aSL}$	$\sqrt{\theta}$
59000	2.221	. 07426	13.466	216.66	14.719	. 7519	. 8671
59100	2.211	. 07390	13.531	216.66	14.719	7519	. 8671
59200	2.200	. 07355	13.596	216.66	14.719	7519	8671
59300	2. 190	. 07320	13.661	216.66	14.719	. 7519	. 8671
59400	2.179	. 07285	13.726	216.66	14.719	. 7519	. 8671
59500	2.169	. 07250	13.793	216.66	14.719	. 7519	8671
59600	2. 158	. 07215	13.860	2.16 .66	14.719	. 7519	8671
59700	2.148	. 07180	13.927	21666	14.719	. 7519	8671
59000	2.133	. 07146	13.993	216.66	14.719	. 7519	. 8671
59900	2.127	. 07112	14.060	216.66	14.719	. 7519	. 3671
60000	2.117	. 07077	14.130	216.66	14.719	. 7519	. 8671
60100	2.107	. 07044	14.196	216.66	14.719	. 7519	. 8671
60200	2.097	07010	14.265	216.66	14.715	. 7519	. 3671
60300	2.087	06976	14.334	216.66	14.719	. 7519	. 8671
60400	2.077	. 06943	14.403	216.66	14.719	. 7519	. 8671
60500	2.067	. 06910	14.471	216.66	14.719	7519	8671
60600	2.057	. 06376	14.543	216.66	14.719	. 7519	8671
60700	2.047	. 06843	14,613	216.66	14.719	7519	8671
60800	2.037	. 06310	14.684	216.66	14.719	. 7519	8671
60900	2.0281	. 06778	14.753	216.66	14.719	. 7519	8671
61000	2.0183	06745	14.825	216.66	14.719	. 7519	8671
61100	2.0087	06713	14.896	216.66	14.719	. 7519	8671
61200	1.9990	. 06681	14.967	216.66	14.719	. 7519	8671
61300	1.9894	. 06649	15.039	216.66	14.719	. 7519	8671
61400	1.9799	06617	15,112	216.66	14.719	. 7519	8671
61500	1.9704	06585	15.186	216.66	14.719	. 7519	8671
61600	1.9610	. 06554	15.257	216.66	14.719	. 7519	8671
61700	1.9515	. 06522	15.332	216.66	14.719	. 7519	8671
61800	1.9422	. 066491	15.405	216.66	14.719	. 7519	8671
61900	1.9329	. 06460	15.479	216.66	14.719	. 7519	8671
62000	1.9236	. 06429	15.554	216.66	14.719	. 7519	8671
62100	1.9144	. 06398	15.629	216.66	14.719	. 751%	8671
62200	1.9052	06367	15.706	216.66	14.719	. 7519	8671
62300	1.8961	C6337	15.780	216.66	14.719	. 7519	6671
62400	1.8870	06306	15.857	216.66	14.719	. 7519	8671
62500	1.8779	06276	15.933	216.66	14.719	. 7519	8671
62600	1.8689	06246	16.010	216.66	14.719	. 7515	3671
62700	1.8600	06216	16.087	216.66	14.719	7519	8671
62900	1.8510	. 06186	16.165	216.66	14.719	. 7515	3671
62900	1.8421	. 06157	16.241	216.66	14.719	. 7514	8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\stackrel{\sigma}{\mathrm{p} / \mathrm{PSL}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{\theta}$	$\begin{gathered} a \\ \text { (Knots) } \end{gathered}$
59000	. 09877	3143	3.1820	11.676	15.529	573.58
59100	. 09829	3135	3.1896	11.733	15,605	573.58
59200	. 09782	3128	3.1973	11.789	15.679	573.58
59300	. 09735	. 3120	3.2050	11.845	15.754	573.58
59400	09689	3113	3.2127	11.902	15.830	573.58
59500	. 09642	. 3105	3.2204	11.960	15.906	573.58
59600	. 09596	. 3098	3.2281	12.018	15.984	573.58
59700	. 09550	. 3090	3.2359	12.076	16.061	573.58
59800	. 09504	3083	3.2438	12.134	16.138	573.58
59900	. 09459	. 3075	3.2515	12.192	16.215	573.58
60000	. 09413	3068	3.2594	12.252	16.295	573.58
60100	. 09368	3061	3.2672	12.309	16.372	573.58
60200	. 09323	. 3053	3.2750	12.369	16.451	573.58
60300	. 09279	. 3046	3.2829	12.429	16.531	573.58
60400	. 09234	3039	3.2908	12.488	16.610	573.58
60500	. 09190	. 3031	3.2987	12.548	16.689	573.58
60600	. 09146	. 3024	3.3067	12.610	16.772	573.58
60700	. 09102	3017	3.3147	12.671	16.853	573.58
60800	. 09058	3010	3.3226	12.732	16.934	573.58
60900	. 09015	3002	3.3306	12.792	17.014	573.58
61000	. 08972	. 2995	3.3386	12.855	17.097	573.58
61100	. 08929	2988	3.3466	12.916	17.179	573.58
61200	. 08386	2981	3.3547	12.978	17.261	573.58
61300	. 08443	. 2974	3.3528	13.041	17.344	573.58
61400	. 08801	2967	3.3709	13.104	17.428	573.58
61500	. 08758	. 2959	3.3790	13.167	17.513	573.58
61600	. 08717	. 2952	3.3871	13.230	17.596	573.58
61700	. 08675	2945	3.3953	13.295	17.682	573.58
61800	. 08633	. 2938	3.4035	13.358	17.766	573.58
61900	. 08592	. 2931	3.4116	13.422	17.852	573.58
62000	. 08550	2924	3.4199	13.487	17.938	573.58
62100	. 08510	2917	3.4280	13,552	18.025	573.58
62200	. 08469	. 2910	3.4363	13.618	18.113	573.58
62300	. 08428	2903	3.4445	13.683	18.198	573.58
62400	. 08388	2896	3.4529	13.750	18.288	573.58
62500	. 08347	. 2889	3.4612	13.816	18.375	573.58
62600	. 08307	. 2882	3.4695	13.882	18.463	573.58
62700	. 08268	2875	3.4778	13.949	18.552	573.58
62800	. 08228	. 2868	3.4862	14.017	18.642	573.58
62900	. 08188	. 2862	3.4946	14.083	18.730	573.58

TABLE 9.3

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \text { (Feet) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pa}_{\mathrm{a}} \\ (' \mathrm{Hg}) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ \mathrm{Pa}_{\mathrm{a}} / \mathrm{P}_{\mathrm{aS}} \mathrm{~L} \end{gathered}$	1/8	$\begin{gathered} \mathrm{T}_{\mathbf{a}} \\ (\cdot \mathbf{K}) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}_{\mathrm{a}}}$	$\stackrel{\theta}{T_{a} / T_{a S L}}$	$\sqrt{\theta}$
63000	1.8333	. 06127	16.321	216.66	14.719	7519	. 8671
63100	1.8246	. 06098	16.398	216.66	14.719	7519	8671
63200	1.8158	. 06069	16.477	216.66	14.719	7519	8671
63300	1.8071	. 06039	16.559	216.66	14.719	7519	3671
63400	1.7984	06010	16.638	216.66	14,719	7519	8671
63500	1.7898	. 05982	16.716	216.66	14.719	7519	8671
63600	1.7812	. 05953	16.798	216.66	14.719	7519	8671
63700	1.7727	05924	16.880	216.66	14.719	7519	8671
63800	1.7642	. 05896	16.960	216.66	14.719	. 7519	8671
63900	1.7558	. 05868	17.041	216.66	14.719	. 7519	. 8671
64000	1.7473	. 05840	17.123	216.66	14.719	. 7519	. 8671
64100	1.7389	05812	17.205	216.66	14.719	7519	8671
64200	1.7306	. 05784	17.289	216.66	14.719	. 7519	. 8671
64300	1.7223	. 05756	17.373	216.66	14.719	. 7519	. 8671
64400	1.7140	. 05728	17.458	216.66	14.719	. 7519	. 8671
64500	1.7058	. 05701	17.540	216.66	14.719	. 7519	. 8671
64600	1.6977	. 05674	17.624	216.66	14.719	. 7519	8671
64700	1.6895	. 05647	17.708	216.66	14.719	7519	8671
64800	1.6814	. 05620	17.793	216.66	14.719	. 7519	8671
64900	1.6733	. 05592	17.882	216.66	14.719	. 7519	. 8671
65000	1.6653	. 05566	17.066	216.66	14.719	. 7519	. 8671
65100	1.6573	05539	18.053	216.66	14.719	. 7519	8671
65200	1.6494	. 05513	18.138	216.66	14.719	. 7519	. 8671
65300	1.6415	. 05486	18.228	216.66	14.719	. 7519	. 8671
65400	1.6336	. 05460	18,315	216.66	14.719	. 7519	8671
65500	1.6258	. 05433	18.406	216.66	14.719	. 7519	. 8671
65600	1.6179	. 05407	18.494	216.66	14.719	. 7519	. 8671
65700	1.6102	. 05382	18,580	216.66	14,719	. 7519	. 8671
65800	1.6025	. 05356	18.670	216.66	14.719	. 7519	. 8671
65900	1.5948	. 05330	18.761	216.66	14.719	7519	. 8671
66000	1.5872	. 05305	18.850	216.66	14.719	7519	. 8671
66100	1.5795	. 05279	18.943	216.66	14.719	7519	8671
66200	1.5720	. 05254	19.033	216.66	14.719	7519	8671
66300	1.5644	. 05229	19.124	216.66	14.719	7519	8671
66400	1.5569	. 05203	19.219	216.66	14.719	7519	8671
66500	1.5495	. 05179	19.308	216.66	14.719	. 7519	8671
66600	1.5421	. 05154	19.402	216.66	14.719	. 7519	8671
66700	1.5347	. 05129	19.497	216.66	14.719	7519	8671
66800	1.5273	. 05104	19.592	216.66	14.719	7519	8671
66900	1.5200	. 05080	19.685	216.66	14.719	. 7519	. 8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Feet}) \end{gathered}$	$\stackrel{\sigma}{\rho / \mathrm{PSL}}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{6}$	(Knots)
63000	. 08149	. 2855	3.5030	14.152	18.822	573.58
63100	. 08110	2848	3.5114	14.219	18.911	573.58
63200	. 08071	. 2841	3.5199	14.287	19.002	573.58
63300	. 08032	2834	3.5284	14.358	19.096	573.58
63400	. 07994	. 2827	3.5369	14.427	19.188	573.58
63500	. 07956	. 2821	3.5453	14.495	19.278	573.58
63600	. 07918	. 2814	3.5539	14.565	19.372	573.58
63700	07880	2807	3.5624	14.637	19.467	573.58
63800	. 07842	2800	3.5710	14.706	19.559	573.58
63900	. 07804	. 2794	3.5796	14.776	19.653	573.58
64000	. 07767	. 2787	3.5882	14.847	19.747	573.58
64100	. 07730	2780	3.5968	14.919	19.842	573.58
64200	. 07693	. 2774	3.6055	14.991	19.938	573.58
64300	. 07656	. 2767	3.6141	15.064	20.035	573.58
64400	. 07619	2760	3.6229	15.137	20.133	573.58
64500	. 07582	. 2754	3.6316	15.209	20.228	573.58
64600	. 07546	. 2747	3.6403	15.282	20.325	573.58
64700	. 07510	. 2740	3.6490	15.355	20,422	573.58
64800	. 07474	. 2734	3.6578	15.428	20.520	573.58
64900	. 07438	. 2727	3.6667	15.506	20.623	573.58
65000	. 07402	. 2721	3.6755	15.578	20.719	573.58
65100	. 07367	. 2714	3.6843	15.654	20.820	573.58
65200	. 07332	2708	3.6932	15.728	20.918	573.58
65300	. 07296	. 2701	3.7021	15.805	21.02	573.58
65400	. 07261	. 2695	3.7110	15.880	21.12	573.58
65500	. 07227	. 2688	3.7199	15.959	21.22	573.58
65600	. 07192	. 2682	3.7289	16.036	21.32	573.58
65700	. 07158	. 2675	3.7378	16.111	21.42	573.58
65800	. 07123	. 2669	3.7468	16.189	21.53	573.58
65900	. 07089	. 2663	3.7558	16.268	21.63	573.58
66000	-07055	. 2656	3.7648	16.344	21.73	573.58
66100	. 07021	. 2650	3.7740	16.425	21.84	573.58
66200	. 06987	. 2643	3.7830	16.503	21.94	573.58
66300	. 06954	. 2637	3.7921	16.582	22.05	573.58
66400	. 06921	. 2631	3.8013	16.665	22.16	573.58
66500	. 06888	. 2624	3.8104	16.742	22.26	573.58
66600	. 06855	. 2618	3.8195	16.823	22.37	573.58
66700	. 06822	. 2612	3.8287	16.905	22.48	573.58
66800	. 06789	2606	3.8380	16.988	22.59	573.58
66900	. 06756	. 2599	3.8472	17.068	22.70	573.58

TABL: 9.3

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P a}_{\mathbf{a}} \\ (\mathrm{H} \mathbf{g}) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ P_{a} / P_{a S L} \end{gathered}$	1/8	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \left(\cdot \frac{\mathrm{~K}}{}\right) \\ \hline \end{gathered}$	T_{a}	$\stackrel{\theta}{\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{a}} \mathrm{SL}}$	$\sqrt{\theta}$
67000	1.5127	05056	19.778	216.66	14.719	7519	8671
67100	1.5054	. 05031	19.876	216.66	14.719	7519	8671
67200	1.4982	. 05007	19.972	216.66	14.719	7519	8671
67300	1.4911	. 04983	20.068	216.66	14.719	7519	8671
67400	1.4839	. 04959	20.165	216.66	14,719	7519	8671
67500	1.4768	. 04936	20.259	216.66	14.719	7519	8671
67600	1.4697	. 04912	20.358	216.66	14.719	. 7519	8671
67700	1.4626	04888	20.458	216.66	14.719	7519	8671
67800	1.4556	. 04865	20.555	216.66	14.719	. 7519	8671
67900	1.4487	. 04842	20.65	216.66	14.719	. 7519	8671
68000	1.4417	. 04818	20.75	216.66	14.719	. 7519	8671
68100	1.4348	. 04795	20.85	216.66	14.719	7519	8671
68200	1.4279	04772	20.95	216.66	14.719	7519	8671
68300	1.4210	. 04749	21.05	216.66	14.719	7519	8671
68400	1.4143	. 04727	21.15	216.66	14.719	7519	8671
68500	1.4075	. 04704	21.25	216.66	14.719	. 7519	8671
68600	1.4007	04681	21.36	216.66	14.719	. 7519	8671
68700	1.3940	04659	21.46	216.66	14.719	7519	8671
68800	1.3873	04637	21.56	216.66	14.719	. 7519	8671
68900	1.3807	. 04614	21.67	21.6 .66	14.719	. 7519	\%
69000	1.3741	04592	21.77	216.66	14.719	7519	$8 i$
69100	1.3675	045770	21.88	216.66	14.719	7519	8671
69200	1.3609	. 04548	21.98	216.66	14.719	. 7519	8671
69300	1.3544	. 04527	22.08	216.66	14.719	. 7519	8671
69400	1.3479	. 04505	22.19	216.66	14.719	7519	8671
69500	1.3414	04483	22.30	216.66	14.719	7519	8671
69600	1.3350	. 04462	22.41	216.66	14.719	. 7519	8671
69700	1.3286	. 04440	22.52	216.66	14.719	7519	8671
69800	1.3222	. 04419	22.62	216.66	14.719	. 7519	8671
69900	1.3159	. 04398	22.73	216.66	14.719	. 7519	8671
70000	1.3096	. 04377	22.84	216.66	14.719	. 7519	8671
70100	1.3033	. 04356	22.95	216.66	14.719	7519	8671
70200	1.2971	. 043335	23.06	216.66	14.719	7519	8671
70300	1.2908	. 04314	23.18	216.66	14.719	. 7519	8671
$74 \sim$	1.2846	04293	23.29	216.66	14.719	7519	8671
70560	1.2785	. 04273	23.40	216.66	14.719	7519	8671
7 T 500	1.2723	. 04252	23.51	216.66	14.719	7519	8671
70700	1.2662	. 04232	23.62	216.66	14.719	7519	8671
70800	1.2602	04212	23.74	216.68	14.719	7519	8671
70900	1.2541	. 04191	23.86	216.66	14.719	7519	8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Feet}) \end{gathered}$	$\rho / \stackrel{\sigma}{\text { PSL }}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{\theta}$	(Knots)
67000	. 06724	. 2593	3.8564	17.149	22.80	573.58
67100	. 06692	2587	3.8657	17.235	22.92	573.58
67200	. 06660	2581	3.8751	17.317	23.03	573.58
67300	. 06628	2574	3.8843	17.401	23.14	573.58
67400	. 06596	2568	3.8937	17.485	23.25	573.58
67500	. 06564	. 2562	3.9031	17.566	23.36	573.58
67600	. 06533	. 2556	3.9124	17.652	23.47	573.58
67700	. 06501	2550	3.9219	17.739	23.59	573.58
67800	06470	. 2544	3.9313	17.823	23.70	573.58
67900	. 06439	. 2538	3.9408	17.907	23.81	573.58
68000	. 06408	. 2531	3.9503	17.997	23.93	573.58
68100	. 06378	2525	3.9597	18.083	24.05	573.58
68200	. 06347	2519	3.9693	18.170	24.16	573.58
68300	. 06317	2513	3.9789	18.258	24.28	573.58
68400	. 06286	2507	3.9884	18.343	24. 39	573.58
68500	06256	2501	3.9980	18.433	24.51	573.58
68600	. 06226	. 2495	4.0076	18.523	24.63	573.58
68700	06196	2489	4.0173	18.611	24,75	573.58
68800	. 06167	. 2483	4.0269	18.699	24.87	573.58
68900	. 06137	. 2477	4.0366	18.792	24.99	573.58
69000	. 06108	. 2471	4.0463	18.882	25.11	573.58
69100	. 06079	2465	4.0560	18.973	25.23	573.58
69200	. 06049	. 2460	4.0658	19.065	25.35	573.58
69300	. 06020	2454	4.0756	19.154	25.47	573.58
69400	. 05992	2448	4.0854	19.247	25.59	573.58
69500	. 05963	2442	4.0953	19.342	25.72	573.58
69600	. 05934	. 2436	4.1051	19.433	25.84	573.58
69700	. 05906	. 2430	4.1150	19.529	25.97	573.58
69800	. 05877	2424	4.1249	19.622	26.09	573.58
69900	. 05849	. 2418	4.1348	19.715	26.22	573.58
70000	. 05821	. 2413	4.1447	19.810	26.34	573.58
70100	. 05793	. 2407	4.1547	19.905	26.47	573. 58
70200	. 05765	. 2401	4.1647	20.002	26.60	75.8
70300	. 05738	2395	4.1747	20.099	26.73	-73.58
70400	. 05710	2390	4.1848	20.198	26.86	573.58
70500	. 05683	2384	4.1948	20.292	26.98	573.58
70600	. 05656	. 2378	4.205	20.392	27.12	573.58
70700	. 05628	2372	4.215	20.489	27.25	573.58
70800	. 05602	. 2367	4.225	20.586	27.38	573.58
70900	. 05575	. 2361	4.235	20.689	27.51	573.58

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathbf{a}} \\ \left({ }^{\prime \prime} \mathrm{Hg}\right) \end{gathered}$	$\begin{gathered} \delta \\ \mathrm{Pa}_{\mathrm{a}} / \mathrm{P}_{\mathrm{aSL}} \end{gathered}$	1/8	$\left(\begin{array}{c} \mathrm{T}_{2} \\ \hline \end{array}\right.$	$\sqrt{T_{a}}$	$\stackrel{\theta}{T_{\mathrm{g}} / \mathrm{T}_{\mathrm{g}}}$	$\sqrt{\theta}$
71000	1.2481	. 04171	23.97	216.66	14.719	. 7519	8671
71100	1,2422	. 04151	-24,09	216.66	14.719	7519	8671
71200	1.2362	. 04131	24.20	216.66	14.719	. 7519	8671
71300	1.2303	. 04112	24.31	216.66	14.719	. 7519	. 8671
71400	1.2243	. 04092	24.43	216.66	14.719	7519	8671
71500	1.2185	. 04072	24.55	216.66	14.719	. 7519	. 8671
71600	1.2127	. 04053	24.67	216.66	14.719	. 7519	. 8671
71700	1.2068	. 04033	24.79	216.66	14.719	. 7519	. 8671
71800	1.2010	. 04014	24.91	216.66	14.719	. 7519	. 8671
71900	1.1953	. 03995	25.03	216.66	14.719	. 7519	. 8671
72000	1.1896	. 03976	25.15	216.66	14.719	. 7519	. 8671
72100	1.1838	. 03957	25.27	216.66	14.719	. 7519	. 8671
72200	1.1782	. 03938	25.39	216.66	14.719	. 7519	. 8671
72300	1.1725	. 03919	25.51	216.66	14.719	. 7519	. 8671
72400	1.1669	. 03900	25.64	216.56	14,719	. 7519	8671
72500	1.1613	. 03881	25.76	216.66	14.719	. 7519	8671
72600	1.1557	. 038 b́3	25.88	216.66	14.719	. 7519	8671
72700	1.1502	. 03844	26.01	216.66	14.719	. 7519	8671
72800	1.1447	. 03826	26.13	216.66	14.719	. 7519	8671
12900	1.1392	. 03807	26.26	216.66	14.719	. 7519	8671
73000	1.1337	. 03789	26. 39	216.66	14.719	. 7519	. 8671
73100	1.1283	03771	26, 51	216.66	14.719	7519	8671
73200	1.1229	. 03753	26.64	216.66	14.719	. 7519	. 8671
73300	1.1175	. 03735	26.77	216.66	14.719	. 7519	. 8671
73400	1.1121	. 03717	26.90	216.66	14.719	. 7519	8671
73500	1.1068	. 03699	27.03	216.66	14.719	. 7519	. 8671
73600	1.1015	. 03681	27.16	216.66	14.719	. 7519	. 8671
73700	1.0962	. 03664	27, 29	216. 66	14.719	. 7519	8671
73800	1.0910	. 03646	27.42	216.66	14.719	. 7519	. 8671
73900	1.0857	. 03629	27.55	216.66	14.719	. 7519	8671
74000	1.0805	. 03611	27.69	216.66	14.719	. 7519	. 8671
74100	1.0753	. 03594	27.82	216.66	14.719	7519	. 8671
74200	1.0702	. 03577	27.95	216.66	14.719	7519	8671
74300	1.0650	. 03559	28.09	216.66	14.719	7519	8671
74400	1.0600	. 03542	28.23	216. 66	14,719	7519	8671
74500	1.0549	. 03526	28.36	216.66	14.719	. 7519	. 8671
74600	1.0498	. 03509	28.49	216.66	14.719	. 7519	. 8671
74700	1.0448	. 03492	28.63	216.66	14,719	. 7519	8671
74800	1.0398	. 03475	28,77	216.66	14.719	. 7519	8671
74900	1.0348	. 03458	28.91	216.66	14.719	. 7519	8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\stackrel{\sigma}{\rho / \rho S L}$	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$118 \sqrt{\theta}$	a (Knots)
71000	. 05548	. 2355	4.245	20.788	27.64	573.58
71100	. 05521	. 2350	4. 255	20.889	27.78	573.58
71200	. 05495	. 2344	4.266	20.990	27.91	573.58
71300	. 05469	. 2338	4.276	21.087	28.04	573.58
71400	. 05442	. 2333	4.286	21.190	28.18	573.58
71500	. 05416	. 2327	4.296	21.294	28.32	573.58
71600	. 05390	. 2322	4.307	21.394	28.45	573.58
71700	. 05354	. 2316	4.317	21.500	28.59	573.58
7180 C	. 05339	. 2311	4.328	21.601	28.73	573.58
71900	. 05313	. 2305	4.338	21.704	2.8 .86	573.58
72000	. 05288	. 2299	4.348	21.808	29.00	573.58
? 2100	. 05262	. 2294	4.359	21.913	29.14	573.58
72200	. 05237	. 2288	4.369	22.018	29.28	573.58
72300	. 05212	. 2283	4.380	22.125	29.42	573.58
72400	05187	. 2277	4.390	22.233	29,57	573.58
72500	. 05162	. 2272	4.401	22.342	29.71	573.58
72600	. 05137	. 2267	4.412	22.446	29.85	573.58
72700	. 05113	. 2261	4,422	22,55	30.00	573.58
72800	. 05088	. 2256	4.433	22.66	30.14	573.58
72900	. 05064	. 2250	4.443	22.77	30.29	573.58
73000	. 05039	. 2245	4.454	22.88	30.43	573.58
73100	. 05015	. 2239	4.455	22.99	30.58	573.58
73200	. 04991	. 2234	4.476	23.10	30.72	573.58
73300	. 04967	. 2229	4.486	23.21	30.87	573.58
73400	. C 4943	. 2223	4.497	23.32	31.02	573,58
73500	. 04920	. 2218	4.508	23.44	31.17	573.58
73600	. 04896	. 2213	4.519	23.55	31.32	573.58
73700	. 04873	. 2207	4.530	23.66	31.47	573.58
73800	. 04849	. 2202	4.541	23.78	31.63	573.58
73900	. 04826	. 2197	4.552	23.89	31.77	573.58
74000	. 04803	. 2192	4. 562	24.01	31.93	573.58
74100	. 04780	. 2186	4.573	24.12	32.08	573.58
74200	. 04757	. 2181	4.584	24.24	32.24	573.58
74300	. 04734	. 2176	4.596	24.36	32.40	573.58
74400	. 04712	. 2171	4.607	24.48	32.55	573.58
74500	. 04689	. 2165	4.618	24.59	32.70	573.58
74600	. 04666	. 2160	4.629	24.71	32.86	573.58
74700	. 04644	. 2155	4,640	24.83	33.02	573.58
74800	. 04622	. 2150	4.651	24.95	33,18	573.58
74900	. 04600	.2145	4.662	25.07	33.35	573.58

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \text { (Feet) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pa} \\ (1 \mathrm{Hg}) \\ \hline \end{gathered}$	$\stackrel{\delta}{P_{a} / P_{a S L}}$	1/8	$\begin{gathered} \mathrm{T}_{\mathrm{a}} \\ \left(\cdot{ }^{\mathrm{K}}\right) \\ \hline \end{gathered}$	$\sqrt{T_{a}}$	$\stackrel{\theta}{\mathrm{T}_{\mathrm{a}} / \stackrel{\mathrm{T}}{a S I}}$	$\sqrt{\theta}$
75000	1.0298	. 03442	29.05	216.66	14.719	. 7519	8671
75100	1.0249	. 03425	29.19	216,66	14.719	7519	8671
75200	1.0199	. 03409	29.33	216.66	14.719	. 7519	8671
75300	1.0151	. 03393	29.47	216.66	14.719	. 7519	. 8671
75400	1.0102	. 03376	29.62	216.66	14.719	. 7519	8671
75500	1.0054	. 033360	29.76	216.66	14.719	7519	8671
75600	1.0006	. 03344	29.90	216.66	14.719	. 7519	8671
75700	. 9957	. 03328	30,04	216.66	14.719	7519	8671
75800	. 9910	. 03312	30.19	216.66	14.719	. 7519	8671
75900	. 9862	. 03296	30.33	216.66	14.719	7519	8671
76000	. 9815	. 03280	30.48	216.66	14.719	. 7519	8671
76100	. 9768	. 03265	30.62	216.66	14.719	7519	8671
76200	. 9721	. 03249	30.77	216.66	14.719	. 7519	8671
76300	. 9674	. 03233	30.93	216.66	14.719	. 7519	8671
26400	. 9628	. 03218	31.07	216.66	14.719	7519	8671
76500	. 9582	. 03202	31.23	216.66	14.719	. 7519	8671
76600	. 9536	. 03187	31.37	216.66	14.719	. 7519	. 8671
76700	. 9490	03172	31.52	216.66	14.719	. 7519	. 8671
76800	. 9445	. 03156	31.68	216.66	14.719	. 7519	8671
76900	. 9400	. 03141	31.83	216.66	14.719	. 7519	8671
77000	. 9354	. 03126	31.98	216.66	14.719	. 7519	. 8671
77100	. 9309	. 03111	32.14	216.66	14.719	. 7519	. 8671
77200	. 9265	. 03096	32.29	216.66	14.719	. 7519	. 8671
77300	. 9221	. 03082	32.44	216.66	14.719	. 7519	. 8671
77400	.9176	. 03067	32.60	216.66	14.719	. 7519	8671
77500	. 9132	. 03052	32.76	216.66	14.719	. 7519	8671
77600	. 9088	. 03037	32.92	216.66	14.719	. 7519	. 8671
77700	. 9045	. 03023	33.07	216.66	14.719	. 7519	8671
77800	. 9002	. 03008	33.24	216.66	14.719	. 7519	. 8671
77900	. 8958	. 02994	33.40	216.66	14.719	.7519	. 8671
78000	. 8915	. 02980	33.55	216.66	14.719	. 7519	. 8671
78100	. 8873	. 02965	33.72	216.66	14.719	. 7519	8671
78200	. 8830	. 02951	33.88	216.66	14.719	. 7519	. 8671
78300	. 8788	. 02937	34.04	216.66	14.719	. 7519	. 8671
78400	. 8745	. 02923	34,21	216.66	14.719	. 7519	. 8671
78500	. 8704	. 02909	34.37	216.66	14.719	. 7519	. 8671
78600	. 8662	. 02895	34.54	216.66	14.719	. 7519	. 8671
78700	. 8620	. 02881	34.71	216.66	14.719	7519	8671
78300	. 8679	. 02867	34.87	216.66	14.719	. 7519	. 8671
78900	. 8538	. 02853	35.05	216.66	14.719	. 7519	. 8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Fe} \mathrm{et}) \end{gathered}$	σ p/psin	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / 6$	$1 / 8 \sqrt{\theta}$	$\begin{gathered} \mathrm{a} \\ \text { (Knots) } \\ \hline \end{gathered}$
75000	. 04578	2140	4.673	25.19	33.50	573.58
75100	. 04556	2134	4,685	25, 31	33.67	573.58
75200	04534	2129	4.696	25.43	33.82	573.58
75300	. 04512	2124	4.707	25.55	33.98	573.58
75400	04490	2119	4. 719	25.68	34.16	573.58
75500	. 04469	2114	4.730	25.80	34.32	573.58
75600	. 04448	2109	4.741	25.93	34.48	573.58
75700	. 04426	2104	4.753	26.05	34.65	573.58
75800	. 04405	2099	4.764	26.18	34.82	573.58
75900	. 04384	. 2094	4.776	26.30	34.98	573.58
76000	. 04363	2089	4.787	26.43	35.16	573.58
76100	. 04342	2084	4.799	26.55	35.32	573.58
76200	. 04321	2079	4.810	26.68	35.49	573.58
76300	. 04300	2074	4.822	26.82	35.67	573.58
76400	. 04280	2069	4.833	26.94	35.83	573.58
76500	. 04259	2064	4.845	27.08	36.01	573.58
76600	. 04239	2059	4.857	27.20	36.18	573.58
26700	04218	2054	4.868	27.33	36.35	573.58
76800	. 04198	. 2049	4.880	27.47	36.54	573.58
76900	. 04178	2044	4.892	27.60	36.71	573.58
77000	. 04158	20.39	4.904	27.73	36.89	573.58
77100	. 04138	2034	4.915	27.87	37.07	573.58
77200	. 04118	2029	4.927	28.00	37.24	573.58
77300	. 04099	2024	4.939	28.13	37.41	573.58
77400	. 04079	2020	4.951	28.27	37.60	573.58
77500	. 04059	2015	4.963	28.41	37.78	573.58
77600	. 04040	2010	4.975	28.55	37.97	573.58
77700	04020	2005	4.987	28.68	38.14	573.58
77800	04001	2000	4.999	28.82	38.33	573.58
77900	. 03982	1996	5.011	28.96	38.51	573.58
78000	. 03963	. 1991	5.023	29.09	38.69	573.58
78100	03944	1986	5.035	29.24	38.89	573.58
78200	03925	1981	5.047	29.38	39.07	573.58
78300	. 03906	1976	5.059	29.52	39.26	573.58
78400	03887	1972	5.071	29.66	39.45	573.58
78500	. 03869	1967	5.084	29.80	39.64	573.58
78600	. 03850	. 1962	5.096	29.95	39.83	573.58
78700	. 03832	. 1958	5.108	30.09	40.02	573.58
78800	. 03813	. 1953	5.120	30.24	40.22	573.58
78900	. 03795	. 1948	5. 133	30.39	40.42	573.58

$\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathbf{a}} \\ (11 \mathrm{Hg}) \\ \hline \end{gathered}$	$\begin{gathered} \delta \\ \mathrm{P}_{\mathrm{a}} / \mathrm{P}_{\mathrm{aSL}} \end{gathered}$	1/8	$\begin{gathered} T_{a} \\ \left(\cdot{ }^{\prime}\right) \\ \hline \end{gathered}$	$\sqrt{\mathrm{T}_{a}}$	$\stackrel{\ominus}{\mathrm{T}_{a} / \stackrel{\mathrm{T}}{a S L}^{2}}$	$\sqrt{\theta}$
79000	. 8497	. 02840	35.21	216.66	14.719	7519	8671
79100	8456	. 02826	35.38	216.66	14.719	7519	8671
79200	8416	. 02813	35.54	216.66	14.719	7519	8671
79300	. 8375	02799	35.72	216.66	14.719	. 7519	. 8671
79400	8335	. 02786	35.89	216.66	14.719	7519	8671
79500	. 8295	. 02772	36.07	216.66	14.719	7519	8671
79600	. 8256	. 02759	36.24	216.66	14.719	. 7519	8671
79700	8216	. 02746	36.41	216.66	14.719	7519	8671
79800	8176	. 02733	36.58	216.66	14.719	. 7519	. 8671
79900	. 8137	. 02720	36.76	216.65	14.719	. 7519	8671
80000	. 8098	. 02706	36.95	216.66	14.719	7519	. 8671

TABLE 9.2

$\begin{gathered} \mathrm{H}_{\mathrm{C}} \\ (\mathrm{Feet}) \\ \hline \end{gathered}$	σ pips.	$\sqrt{\sigma}$	$1 / \sqrt{\sigma}$	$\sqrt{\theta} / \delta$	$1 / 8 \sqrt{\theta}$	(Knots)
79000	. 03777	. 1943	5.145	30.53	40.60	573.58
79100	. 03759	. 1939	5.157	30.68	40.80	573.58
79200	. 03741	. 1934	5.170	30.82	40.99	573.58
79300	. 03723	. 1929	5.182	30.97	41.20	573.58
79400	. 03705	. 1925	5.195	31.12	41.39	573.58
79500	. 03687	. 1920	5.207	31.28	41.60	573.58
79600	. 03670	.1916	5. 220	31.42	41.79	573.58
79700	. 03652	. 1911	5. 232	31,57	41.99	573.58
79800	. 03634	.1906	5.245	31.72	42.19	573.58
79900	. 03617	. 1902	5.258	31.87	42.39	573.58
80000	. 03600	. 1897	5, 270	32.04	42.61	573.58

TABLE 9.4

MACH NUMBER, M FOR VARIOUS VALUES OF q_{c} / F_{a}

$$
\begin{aligned}
& \text { For } q_{c} / P_{a} \leq 0.893(M \leq 1.00) \\
& q_{c}=\left(1+0.2 M^{2}\right)^{3.5}-1
\end{aligned}
$$

Note:

$$
q_{c}=P_{t}^{\prime}-P_{a}
$$

Where $P_{t}^{\prime}=$ free stream total pressure $\left(P_{t}\right)$ for subsonic flight.

ALSO

INDICATED MACH NUMBER CORRECTED FOR INSTRUMENT ERROR. $M_{i c}$ FOR VARIOUS VALUES OF $q_{c i c} / P_{s}$

$$
\begin{aligned}
& \text { For } q_{c i c} / P_{s} \leq 0.893\left(M_{i c} \leq 1.00\right) \\
& \frac{q_{\text {cic }}}{P_{s}}=\left(1+0.2 M_{i c}{ }^{2}\right)^{3.5}-1
\end{aligned}
$$

Note:

$$
q_{c i c}=P_{t}^{\prime}-P_{s}
$$

Where $P_{t}^{\prime}=$ free stream total pressure $\left(P_{t}\right)$ for subsonic flight.

∞

-

 $\dot{0}$

$+$

 -

 0

 q_{c} / D_{a}

∞

n

n obo o o ooor

" ј

 nunnunnoninn in

0
 $\infty \infty \infty \times \infty \times \infty \times \infty$

$\stackrel{+}{\circ}$

\circ
0
8
8

$\left.\begin{array}{l}a^{N} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$ ㅇNがNNたが
$\rightarrow \infty \infty \infty \infty \infty \infty \infty \infty \infty$

TABLE 9.5

MACH NUMBER, M FOR VARIOUS VALUES OF $q_{c} /{ }^{\prime} P_{a}$ FOR M ≥ 1.00 (Supersonic)

$$
\frac{q_{c}}{P_{a}}=\frac{166.921 M^{7}}{\left(7 M^{2} \cdot 1\right)^{2.5}}-1
$$

Note:

$$
q_{c}=P_{t}^{\prime}-P_{a}
$$

Where $P_{t}^{\prime}=$ total pressure behind the shock for supersonic flight. ALSO
$q_{c i c}{ }^{/ P_{s}}$ FOR VARIOUS VALUES OF INDICATED MACH NUMBER CORRECTED FOR INSTRUMENT ERROR, $M_{i c}$ FOR $M_{i c} \geq 1.00$ (Supersonic)

$$
\frac{q_{c i c}}{P_{s}}=\frac{166.921 M_{i c}{ }^{7}}{\left(7 M_{i c}{ }^{2}-1\right)^{2.5}}-1
$$

Note:

$$
q_{c i c}=P_{t}^{\prime}-P_{s}
$$

Where $P_{t}^{\prime}=$ total pressure behind the shock for supersonic flight.

TABLE 9.5

0

NNNNNNNN
∞

N～NへNNへへへ～
\sim

0

m

 ～inininN～N～N
 vivivivivivi

 j～iN～N～NiNi
N

 Nunvivivinvi

 NNNNNへNNNN
 NヘNヘNヘNNへN

Σ

 nin ninnunn un n n

 NNNNMN

n
 NNNがNが

NNMn0 nomon $\dot{N} \dot{N} \dot{N} \dot{\sim} \times \underset{\sim}{\infty}$

m

NmいかONいのN

 NinNiNNへNへN

○ーNのボッロッかの N～iNiNininininj

$\stackrel{\infty}{\infty}$

Abstract

MmMNNmm*nN
 $0^{\circ} 0$ 0 0 - 0 - 0
 OON~N~NNN

 $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0.0^{\circ} 0^{\circ}$

Noーmoonanon

σ

∞

 $\therefore \infty N+N+\infty+\infty$

$\therefore N+N+N+\infty+\infty$

anomononnu omorondNanomo か cóaiaiáaiáa

$\infty^{\circ} \infty^{\circ} \infty \infty^{\circ} \infty \infty^{\circ} \infty \infty^{\circ} \infty \infty^{\circ}$
 $\infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ} \infty \infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ}$

 $\infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ} \infty \infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ}$
 $\infty^{\circ} \dot{0}^{\circ} \infty^{\circ} \infty \infty^{\circ} \infty^{\circ} \infty^{\circ} \infty \infty^{\circ} \infty^{\circ}$

 $\infty^{\circ} \infty^{\circ} \infty^{\circ} \infty \infty^{\circ} \infty \infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ}$

σ

DIFFERENTIAL PRESSURE, $q_{c}(" H g)$ FOR VARIOUS VALUES OF CALIBRATED AIRSPEED, V_{c} (Knots)

$$
\begin{array}{ll}
\frac{q_{c}}{P_{a S L}}=\left[l+0.2\left(v_{c} / a_{S L}\right)^{2}\right]^{3.5}-1 & v_{c} \leq a_{S L} \\
\frac{q_{c}}{P_{a S L}}=\frac{166.921\left(v_{c} / a_{S L}\right)^{7}}{\left[7\left(V_{c} / a_{S L}\right)^{2}-1\right]^{2.5}}-1 & v_{c} \geq a_{S L}
\end{array}
$$

where $P_{\text {aSL }}=29.92126{ }^{\mathrm{H}} \mathrm{Hg}$

$$
{ }^{a_{S L}}=661.48 \text { Knots }
$$

Note:

$$
q_{c}=P_{t}^{\prime}-P_{a}
$$

where $P_{t}^{\prime}=$ free stream total pressure (P_{t}) for subsonic flight $P_{t}^{\prime}=$ total pressure behind the shock in supersonic flight
ALSO

INDICATED DIFFERENTIAL PRESSURE, $q_{c i c}\left({ }^{\prime} \mathrm{Hg}\right)$ FOR VARIOUS VALUES OF INDICATED AIRSPEED CORRECTED FOR INSTRUMENT ERROR, $\mathrm{V}_{\text {ic }}$ (Knots)

$$
\begin{array}{ll}
\frac{q_{\mathrm{cic}}}{P_{\mathrm{aSL}}}=\left[1+0.2\left(\mathrm{~V}_{\mathrm{ic}} / \mathrm{a}_{\mathrm{SL}}\right)^{2}\right]^{3.5}-1 & \mathrm{v}_{\mathrm{ic}} \leq a_{S L} \\
\frac{q_{\mathrm{cic}}}{P_{\mathrm{aSL}}}=\frac{166.921\left(\mathrm{~V}_{\mathrm{ic}} / \mathrm{a}_{\mathrm{SL}}\right)^{7}}{\left[7\left(\mathrm{~V}_{\mathrm{ic}} / \mathrm{a}_{\mathrm{SL}}\right)^{2}-1\right]^{2.5}}-1 & v_{\mathrm{ic}} \geq a_{\mathrm{a}_{\mathrm{SL}}}
\end{array}
$$

where $P_{a S L}=29.92126{ }^{\prime \prime} \mathrm{Hg}$

$$
{ }^{a_{S L}}=661.48 \text { Knots }
$$

Note:

$$
q_{\text {cic }}=P_{t}^{\prime}-P_{s}
$$

where $P_{t}^{\prime}=$ free stream total pressure $\left(P_{t}\right)$ for subsonic flight $P_{t}^{\prime}=$ total pressure behind the shock for supersonic flight

TABLE 9.6
DIFFERENTIAL PRESSURE, $q_{c}\left({ }^{(n} \mathrm{Hg}\right)$ FOR VARIOUS VALUES OF CALIBRATED AIRSPEED, V_{c} (Krots)

$\begin{gathered} V= \\ (\text { Knots }) \end{gathered}$	$\begin{array}{r} 9 \mathrm{9c} \\ \left({ }^{(1)} \mathrm{Hg}\right) \\ \hline \end{array}$
0.0	0.0000
0.5	0.0000
1.0	0.0001
1.5	0.0001
2.0	0.0002
2.5	0.0003
3.0	0.0004
3.5	0.0006
4.0	0.0008
4.5	0.0010
5.0	0.00 i 2
5.5	0.0014
6.0	0.0017
6.5	0.0020
7.0	0.0023
7.5	0.0027
8.0	0.0031
8.5	0.0035
9.0	0.0039
9.5	0.0043
10.0	0.0048
10.5	0.0053
11.0	0.0058
11.5	0.0063
12.0	0.0069
12.5	0.0075
13.0	0.0081
13.5	0.0087
14.0	0.0094
14.5	0.0101
15.0	0.0108
15.5	0.0115
16.0	0.0123
16.5	0.0130
17.0	0.0138
17.5	0.0147
18.0	0.0155
18.5	0.0164
19.0	0.0173
19.5	0.0182

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ \text { (Knots) } \end{gathered}$	$\begin{gathered} 9 \mathrm{C} \\ \left(1{ }^{\prime \prime} \mathrm{Hg}\right) \end{gathered}$
20.0	0.0192
20.5	0.0201
21.0	0.0211
21.5	0.0221
22.0	0.0232
22. 5	0.0242
23.0	0.0253
23.5	0.0264
24.0	0.0276
24.5	0.0287
25.0	0.0299
25.5	0.0311
26.0	0.0324
26.5	0.0336
27.0	0.0349
27.5	0.0362
28.0	0.0375
28.5	0.0389
29.0	0.0403
29.5	0.0417
30.0	0.0431
30.5	0.0446
31.0	0.0460
31.5	0.0475
32.0	0.0490
32.5	0.0506
33.0	0.0522
33.5	0.0538
34.0	0.0554
34.5	0.0570
35.0	- 0.0587
35.5	0.0604
36.0	0.062!
36.5	0.0638
37.0	0.0636
37.5	0.0674
38.0	0.0692
38.5	0.0710
39.0	0.0729
39.5	0.0748

$\left(\begin{array}{c} V_{c} \\ (K n o t s) \end{array}\right.$	$\left(\begin{array}{l} \left.{ }^{q}{ }_{\mathrm{c}}^{\mathrm{Hg}}\right) \\ \hline \end{array}\right.$
40.0	0.0767
40.5	0.0786
41.0	0.0805
41. 5	0.0825
42. 0	0.0845
42. 5	0.0866
43.0	0.0886
43.5	0.0907
44.0	0.0928
44.5	0.0949
45.0	0.0970
45.5	0.0992
46.0	0.1014
46.5	0.1036
47.0	0.1059
47.5	0.1081
48.0	0.1104
48.5	0.1127
49.0	0.1151
49.5	0.1175
50.0	0.1198
50.5	0.1223
51.0	0.1247
51.5	0.1272
52.0	0.1296
52.5	0.1321
53.0	0.1347
53.5	0.1372
54.0	0.1398
54.5	0.1424
55.0	0.1451
55.5	0.1477
56,0	U. 1504
56.5	0.1531
57.0	B. 1558
57. 5	0.1586
58.0	0.1613
58.5	0.1641
59.0	0.1670
59.5	0.1698

$\begin{gathered} V_{c} \\ (\text { Knots }) \end{gathered}$	$\begin{gathered} q_{c} \\ (\stackrel{H g}{ }) \end{gathered}$
80.0	0.3075
80.5	0.3113
81.0	0.3152
81.5	0.3192
82.0	0.3231
82.5	0.3271
83.0	0.3311
83.5	0.3351
34.0	0.3391
84.5	0.3432
85.0	0.3473
85. 5	0.3514
36.0	0.3555
¢6. 5	0.3597
87.0	0.3639
<7. 5	0.36 .1
88.0	0.3723
38.5	0.3766
39.0	0.3809
89.5	0.3852
90.0	0.3895
90.5	0.3939
91.0	0.3983
91.5	0.4027
92.0	0.4071
92.5	0.4116
93.0	0.4161
93.5	0.4206
94.0	0.4251
94.5	0.4297
95.0	0.4342
95.5	0.4388
96.0	0.4435
96.5	0.4431
97.0	0.4528
97.5	0.4575
98.0	0.4623
98.5	0.4670
99.0	0.4718
99.5	0.

V_{c}	q_{c}
$($ Krots $)$	$(\underline{H g})$
100.0	0.4814
100.5	0.4863
101.0	0.4912
101.5	0.4961
102.0	0.5010
102.5	0.5059
103.0	0.5109
103.5	0.5159
104.0	0.5209
104.5	0.5260
105.0	0.5311
105.5	0.5362
106.0	0.5413
106.5	0.5465
107.0	0.5516
107.5	0.5568
108.0	0.5621
108.5	0.5673
109.0	0.5726
109.5	0.5779
110.0	0.5832
110.5	0.5886
111.0	0.5939
111.5	0.5993
112.0	0.6048
112.5	0.6102
113.0	0.6157
113.5	0.6212
114.0	0.6267
114.5	0.8323
115.0	0.6379
115.5	0.6435
116.0	0.6491
116.5	0.6547
117.0	0.6604
117.5	0.6661
118.0	0.6718
118.5	0.6776
119.0	0.6834
119.5	0.6892

V_{c} $(K \because 10 t s)$	q_{c} $(\pi \mathrm{Hg})$
120.0	0.6950
120.5	0.7008
121.0	0.7067
121.5	0.7126
122.0	0.7185
122.5	0.7245
123.0	0.7305
123.5	0.7365
124.0	0.7425
124.5	0.7486
125.0	0.7546
125.5	0.7607
126.0	0.7669
126.5	0.7730
127.0	0.7792
127.5	0.7854
128.0	0.7916
128.5	0.7979
129.0	0.8042
129.5	0.8105
130.0	0.8168
130.5	0.8232
131.0	0.8295
131.5	0.8360
132.0	0.8424
132.5	0.8488
133.0	0.8553
133.5	0.8618
134.0	0.8684
134.5	0.8749
135.0	0.8815
135.5	0.8881
136.0	0.8948
135.5	0.9014
137.0	0.9081
137.5	0.9148
138.0	0.9216
138.5	0.9283
139.0	0.0351
139.5	0.9419

(Krots)	$\left.{ }^{(n)} \mathrm{Hg}\right)$
140.0	88
140.5	0.955
141.0	0.9625
141.5	0.9694
142.0	0.9764
142.5	0.9833
143.0	0.9903
143.5	0.9974
144.0	1. 004
144.5	1.011
145.0	19
145.5	1.026
146	1.033
146.5	1.040
147.0	1.047
147.5	1.054
148.0	1.062
148.5	1.069
149.0	1.076
149.5	1.084
150	
150.5	1.098
151.0	1.106
151.5	1.113
152.0	1.120
152.5	1.128
153.0	1.136
153.5	1.143
154.0	1.151
154.5	
155.0	
155.5	1.173
156.0	1.181
156.5	1.189
157.0	1.197
157.5	1. 204
158.0	1.212
158.5	1.220
159.0	1.228
159.5	1.236

TABLE 9.6

$\begin{gathered} \mathrm{V}_{\mathrm{C}} \\ (\mathrm{Knots}) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ (\mathrm{ng} \mathrm{Hg}) \\ \hline \end{gathered}$
160.0	1. 243
160.5	1.251
161.0	1. 259
161.5	1. 267
162.0	1.275
162.5	1. 283
163.0	1.291
163.5	1. 299
164.0	1.307
164.5	1.315
165.0	1.324
165.5	1,332
166.0	1.340
166.5	1. 348
167.0	1.356
167.5	1. 365
168.0	1.373
168.5	1. 381
169.0	1.390
169.5	1.398
170.0	1.406
170.5	1.415
171.0	1.423
171.5	1.432
172.0	1.440
172.5	1.449
173.0	1,457
173.5	1.466
174.0	1.474
174.5	1.483
175.0	1.492
175.5	1.500
176.0	1.510
176.5	1. 518
177.0	1.527
177.5	1.536
178.0	1. 544
178.5	1.553
179.0	1.562
179.5	1.571

$\begin{gathered} V_{c} \\ \text { Knots }) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ \left(\begin{array}{c} \mathrm{Hg}) \end{array}\right) \\ \hline \end{gathered}$
180.0	1.580
180.5	1.589
181.0	1.598
181.5	1.607
182.0	1.616
182.5	1.625
183.0	1.634
183.5	1.643
184.0	1.652
184.5	1.661
185.0	1.671
185.5	1.680
186.0	1.689
186.5	1.698
187.0	1.708
187.5	1.717
188.0	1.726
188.5	1.736
189.0	1.745
189.5	1.754
190.0	1.764
190.5	1.773
191.0	1.783
191.5	1.792
192.0	1,802
192.5	1.812
193.0	1.821
193.5	1.831
194.0	1.841
194.5	1.850
195.0	1.860
195.5	1.870
196.0	1.880
196.5	1.889
197.0	1.879
197,5	1.909
198.0	1.919
198.5	1.929
199.0	1.939
199.5	1,949

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\mathrm{Kr}, \mathrm{ot} 8) \end{gathered}$	$\begin{gathered} \mathrm{Gc} \\ (\stackrel{\sim}{\mathrm{Hg}}) \\ \hline \end{gathered}$
200.0	1.959
200.5	1.969
201.0	1.979
201.5	1.989
202.0	1.999
202.5	2. 009
203.0	2. 019
203.5	2. 030
204.0	2. 040
204.5	2. 050
205.0	2. 060
205. 5	2. 070
206. 0	2. 081
206. 5	2. 091
207.0	2. 102
20\%.5	2.112
208.0	2.143
208.5	2.133
209.0	2,144
209.5	2. 154
210.0	2.165
210.5	2. 175
211.0	2. 186
211.5	2,196
212.0	2.207
212.5	2. 218
213.0	2. 22.9
213.5	2. 239
214.0	2.250
214.5	2,261
215.0	2. 272
215.5	2, 283
216.0	2, 293
216.5	2, 304
217.0	2. 315
217.5	2, 326
218.0	2. 33 ?
218.5	2. 348
219.0	2. 359
219.5	2. 370

$\begin{gathered} V_{c} \\ (\mathrm{Knots}) \end{gathered}$	$\begin{array}{r} \mathrm{q}_{\mathrm{c}} \\ \left({ }^{\mathrm{Hg})}\right) \\ \hline \end{array}$
220.0	2. 382
220.5	2. 393
221.0	2. 404
221. 5	2. 415
222.0	2. 426
222.5	2.439
223.0	2. 449
223.5	2.460
224.0	2.471
224. 5	2.483
225.0	2.494
225. 5	2.506
226.0	2. 517
226. 5	2. 529
227.0	2. 540
227. 5	2. 552
228.0	2. 563
228. 5	2. 575
229.0	2. 586
229.5	2. 598
230.0	2.610
230.5	2.621
231.0	2.633
231.5	2.645
232.0	2.657
232.5	2.668
233.0	2.680
233.5	2.692
234.0	2.704
234. 5	2.716
235.0	2.728
235.5	2,740
236.0	2.752
236. 5	2. 764
237.0	2.776
237. 5	2.788
238.0	2.800
238.5	2.812
239.0	2.825
239.5	2.837

TABLE 9.6

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\mathrm{Knot} \mathrm{~s}) \end{gathered}$	$\left(\begin{array}{c} \left.{ }^{q} \mathrm{q}_{\mathrm{c}}^{\mathrm{Hg}}\right) \end{array}\right.$
240.0	2.849
240. 5	2.861
241.0	2.874
241.5	2.886
242.0	2.898
242.5	2.911
243.0	2.923
243.5	2.936
244.0	2.948
244.5	2.961
245.0	2.973
245.5	2.986
246.0	2.998
246. 5	3.011
247.0	3.024
247.5	3.036
24. 0	3.049
248. 5	3.062
249.0	3.074
249.5	3.087
250.0	3.100
250.5	3.113
251.0	3.126
251.5	3.139
252.0	3.152
252.5	3.165
253.0	3.178
253.5	3.191
254.0	3.204
254.5	3.217
255.0	3.230
255.5	3.243
256.0	3.256
256.5	3. 269
257.0	3.283
257.5	3.296
253.0	3. 309
258.5	3.323
259.0	3.336
259.5	3.349

$\begin{gathered} V_{\mathrm{C}} \\ \text { Knots } \end{gathered}$	$\begin{gathered} 9 \mathrm{c} \\ \left(\begin{array}{l} \\ \\ \mathrm{n} \\ \mathrm{Hg} \end{array}\right) \end{gathered}$
260.0	3.363
260.5	3. 376
261.0	3. 390
261.5	3.403
262.0	3.417
262.5	3.430
263.0	3.444
263.5	3. 458
264.0	3.471
264.5	3.485
265.0	3.499
265.5	3.512
266.0	3.526
266.5	3. 540
267.0	3. 554
267.5	3. 568
268.0	3.531
268.5	3. 595
269.0	3.609
269.5	3.623
270.0	3.637
270.5	3.651
271.0	3.665
271.5	3.680
272.0	3. 694
272.5	3.708
273.0	3.722
273.5	3.736
274.0	3.750
274. 5	3.765
275.0	3.77 \%
275.5	3.793
276.0	3.808
276.5	3.822
277.0	3.837
277.5	3.851
278.0	3.866
278.5	3.880
279.0	3.895
279.5	3.909

TABLE 9.6

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\text { Knots }) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ \left({ }^{\mathrm{H}} \mathrm{Hg}\right) \end{gathered}$
280.0	3.924
280.5	3.939
281.0	3.953
281.5	3.968
282.0	3.983
282.5	3.997
283.0	4.012
283.5	4.027
284.0	4.042
284.5	4.057
285.0	4.072
285.5	4.087
286.0	4.102
286.5	4.117
287.0	4.132
287.5	4.147
288.0	4.162
288.5	4.177
289.0	4.192
289.5	4. 208
290.0	4.223
290.5	4.238
291.0	4.253
291.5	4.269
292.0	4. 234
292.5	4.299
293.0	4.315
293.5	4.330
294.0	4.346
294. 5	4.361
295.0	4.377
295.5	4.393
296.0	4.408
296.5	4.424
297.0	4.439
297.5	4.455
298.0	4.471
298.5	4.487
299.0	4.502
299.5	4.518

$\begin{gathered} \mathbf{V}_{\mathbf{c}} \\ \text { (Knots) } \end{gathered}$	$\begin{gathered} 9 \mathrm{c} \\ \left(\begin{array}{l} \mathrm{Hg} \end{array}\right) \end{gathered}$
300.0	4.534
300.5	4.550
301.0	4.566
301.5	4.582
302.0	4.598
302. 5	4.614
303.0	4.630
303.5	4.646
304.0	4.662.
304.5	4.678
305.0	4.695
305. 5	4.711
306. 0	4.727
306. 5	4.743
307. 0	4.760
307.5	4.776
308. 0	4.792
308. 5	4.809
309.0	4.825
309.5	4.842
310.0	4.858
310.5	4.875
311.0	4.891
311.5	4.908
312.0	4.925
312.5	4.941
313.0	4.958
313.5	4.975
314.0	4.991
314.5	5.008
315.0	5.025
315.5	5.042
315.0	5.059
316.5	5.076
317.0	5.093
317.5	5.110
318.0	5.127
318.5	5.144
319.0	5.161
319.5	5.178

V_{c} $(K n o t s)$	q_{C} $(N g)$
320.0	5.195
320.5	5.212
321.0	5.230
321.5	5.247
322.0	5.264
322.5	5.281
323.0	5.299
323.5	5.316
324.0	5.334
324.5	5.351
325.0	5.369
325.5	5.386
326.0	5.404
326.5	5.421
327.0	5.439
327.5	5.456
328.0	5.474
328.5	5.492
329.0	5.510
329.5	5.527
330.0	5.545
330.5	5.563
331.0	5.581
331.5	5.599
332.0	5.617
332.5	5.635
333.0	5.653
333.5	5.671
334.0	5.689
334.5	5.707
335.0	5.725
335.5	5.743
336.0	5.762
336.5	5.780
337.0	5.798
337.5	5.817
338.0	5.835
338.5	5.853
339.0	5.872
339.5	5.890

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\text { Knots }) \end{gathered}$	$\left({ }^{9}{ }^{9}{ }_{\mathrm{H}}^{\mathrm{H}} \mathrm{~g}\right)$
340.0	5.909
340.5	5.927
341.0	5.946
341.5	5.964
342.0	5.983
342.5	6.002
343.0	6.020
343.5	6.039
344.0	6.058
344.5	6.077
345.0	6.095
345.5	6.114
346.0	6.133
346.5	6.152
347.0	6.171
347.5	6.190
348.0	6.209
348.5	6.228
349.0	6.247
349.5	6.267
350.0	6.286
350.5	6.305
351.0	6.324
351.5	6.344
352.0	6.363
352.5	6.382
353.0	6.402
353.5	6.421
354.0	6.440
354.5	6.460
355.0	6.479
355.5	6.499
356.0	6.519
356.5	6.538
357.0	6.558
357.5	6.578
358.0	6.597
358.5	6.617
359.0	6.637
359.5	6.657

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\text { Knots }) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ \left.\mathrm{~S}^{(n \mathrm{Hg}}\right) \\ \hline \end{gathered}$
360.0	6.677
360.5	6.697
361.0	6.717
361.5	6.737
362.0	6.757
362.5	6.777
363.0	6.797
363.5	6.817
364.0	6.837
364.5	6.857
365.0	6.877
365.5	6.898
366.0	6.918
366.5	6.938
367.0	6.959
367.5	6.979
368.0	7.000
368.5	7.020
369.0	7.041
369.5	7.061
370.0	7.082
370.5	7.102
371.0	7.123
371.5	7.144
372.0	7.165
372.5	7.185
373.0	7.206
373.5	7.227
374.0	7.248
374.5	7.269
375.0	7.290
375.5	7.311
376.0	7.332
376.5	7.353
377.0	7.374
377.5	7.395
378.0	7.416
378.5	7.437
379.0	7.459
379.5	7.480

$\left.\begin{array}{c} \mathrm{V}_{\mathrm{c}} \\ (\mathrm{Knot} \mathrm{~s} \end{array}\right)$	$\begin{gathered} { }^{9} \mathrm{c} \\ \left({ }^{(n} \mathrm{Hg}\right) \end{gathered}$
380.0	7.501
380.5	7.523
381.0	7.544
381.5	7.566
382.0	7.587
382.5	7.608
383.0	7.630
383.5	7.652
384.0	7.673
384.5	7.695
385.0	7.717
385.5	7.739
386.0	7. 760
336.5	7. 782
387.0	7. 804
387.5	7. 826
388.0	7.848
388. 5	7.869
389.0	7.891
389.5	7.913
390.0	7.936
390.5	7.958
391.0	7.980
391.5	8. 002
392.0	8.024
392.5	8.046
393.0	8. 069
393.5	8.091
394.0	8.113
394. 5	8.136
395.0	8.158
395.5	6.181
396.0	8.203
396.5	8. 226
397. 0	8. 248
397.5	8.271
398. 0	8. 294
398. 5	8.316
399. 0	8.339
399.5	8.362

$\begin{gathered} \mathrm{V}_{\mathrm{C}} \\ (\mathrm{Knot}) \end{gathered}$	$\begin{gathered} 9 \mathrm{q} \\ \left(\begin{array}{l} \mathrm{Hg} \end{array}\right) \\ \hline \end{gathered}$
400.0	8.385
400. 5	8.408
401.0	8.431
401.5	8.453
402.0	8.476
402.5	8.499
403.0	8.523
403.5	8.546
404.0	8.569
404.5	8.592
405.0	8.615
405.5	8.638
406.0	8.662
406.5	8.685
407.0	8.708
407.5	8.732
408.0	8.755
408. 5	8.779
409.0	8.802
409.5	8.826
410.0	8.849
410.5	8.873
411.0	8.897
411.5	8.920
412.0	8.944
412.5	3.968
413.0	8.992
413.5	9.016
414.0	9.040
414.5	9.063
415.0	9.087
415.5	9.112
416.0	9.136
416.5	9.160
417.0	9.184
417.5	9.208
418.0	9.232
418.5	9.257
419.0	9.281
419.5	9.305

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\text { Knots }) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ \left(\mathrm{H}_{\mathrm{g}}\right) \end{gathered}$
420.0	9.330
420.5	9. 354
421.0	9.378
421.5	9.403
422.0	9.427
422.5	9.452
423.0	9.477
423.5	9.501
424.0	9.526
424.5	9.551
425.0	9.576
425.5	9.600
426.0	9.625
426.5	9.650
427.0	9.675
427.5	9.700
428.0	9.725
428.5	9.750
429.0	9.775
429.5	9.800
430.0	9.826
430.5	9.851
431.0	9.876
431.5	9.901
432.0	9.927
432.5	9.952
433.0	9.978
433.5	10.00
434.0	10.03
434.5	10.05
435.0	10.08
435.5	10.11
436.0	10.13
436.5	10.16
437.0	10.18
437.5	10.21
438.0	10,23
438.5	10.26
439.0	10.29
439.5	10.31

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\mathrm{Knot} 8) \end{gathered}$	$\begin{aligned} & \left({ }^{7} \mathrm{H} \mathrm{H}\right) \\ & \hline \end{aligned}$
440.0	10.34
440.5	10.36
441.0	10.39
441.5	10.42
442.0	10.44
442.5	10.47
443.0	10.50
443.5	10.52
444.0	10.55
444. 5	10.57
445.0	10.60
445. 5	10.63
446.0	10.65
446.5	10.68
447.0	10.71
447.5	10.73
448.0	10.76
448.5	10.79
449.0	10.81
449.5	10.84
450.0	10.87
450.5	10.90
451.0	10.92
451. 5	10.95
452.0	10.98
452. 5	11.00
453.0	11.03
453.5	11.06
454.0	11.08
454.5	11.11
455.0	11.14
455.5	11.17
456.0	11.19
456.5	11.22
457.0	11.25
457.5	11.28
458.0	11.30
458.5	11.33
459.0	11.36
459.5	11.39

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ \mathrm{Knot} \mathrm{~s}) \end{gathered}$	$\begin{gathered} q_{c} \\ (\cdots \quad \mathrm{Hg}) \end{gathered}$
460.0	11.41
460.5	11.44
461.0	11.47
461.5	11.50
462.0	11.52
462.5	1.1 .55
463.0	11.58
463.5	11.61
464.0	11.64
464.5	1.1.66
465.0	11.69
465.5	11.72
466.0	11.75
466.5	11.78
467.0	11.81
467. 5	11.83
468.0	11.86
468.5	11.89
469.0	11.92
469.5	11.95
470.0	11.98
470.5	12.01
471.0	12.03
471.5	12.07
472.0	12.09
472.5	12.12
473.0	12.15
473.5	12.18
474.0	12.21
474.5	12.24
475.0	12.27
475.5	12.29
476.0	12.32
476.5	12.35
477.0	12.38
477.5	12.41
478.0	12.44
478.5	12.47
479.0	12.50
479.5	12.53

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ \text { (Knots) } \end{gathered}$	$\begin{gathered} 9_{\mathrm{c}} \\ (1 \mathrm{Hg}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\text { Knots }) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ (1 \mathrm{Hg}) \end{gathered}$
480.0	12.56	500.0	13.78
460.5	12.59	500.5	13.81
481.0	12.62	501.0	13.84
421.5	12.65	501.5	13.87
482.0	12.68	502.0	13.90
482.5	12.71	502. 5	13.93
483.0	12.74	503.0	13.96
483.5	12.77	503.5	14.00
484.0	12.80	504.0	14.03
484.5	12.83	504.5	14.06
485.0	12.86	505.0	14.10
485.5	12.89	505.5	14.12
486.0	12.92	506.0	14.16
486.5	12.95	506.5	14.19
487.0	12.98	507.0	14.22
487.5	13.01	507.5	14.25
488.0	13.04	508.0	14.28
488.5	13.07	508.5	14.32
489.0	13.10	509.0	14.35
489.5	13.13	509.5	14.38
490.0	13.16	510.0	14.41
490.5	13.19	510.5	14.44
491.0	13.22	511.0	14.48
491.5	13.25	511.5	14.51
492.0	13.28	512.0	14.54
492.5	13.31	512.5	14.57
493.0	13.34	513.0	14.61
493.5	13.37	513.5	14.64
494.0	13.40	514.0	14.67
494.5	13.43	514.5	14.70
495.0	13.46	515.0	14.74
495.5	13.49	515.5	14.77
496.0	13.53	516.0	14.80
496.5	13.56	516.5	14.84
497.0	13.59	517.0	14.87
4¢7.5	13.62	517.5	14.90
499.0	13.65	518.0	14.94
498.5	13.68	518.5	14.97
499.0	13.71	519.0	15.00
499.5	13.74	519.5	15.04

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\text { Knots }) \end{gathered}$	$\begin{gathered} { }^{9}{ }_{c} \\ (11 \mathrm{Hg}) \end{gathered}$
520.0	15.07
520,5	15.10
521.0	15.14
521.5	15.17
522.0	15.20
522.5	15.24
523.0	15.27
523.5	15.30
524.0	15.34
524.5	15.37
525.0	15.40
525.5	15.44
526.0	15.47
526.5	15.51
527.0	15.54
527.5	15.57
528.0	15.61
528.5	15.64
529.0	15.68
529.5	15.71
530.0	15.74
530.5	15.78
531.0	15.81
531.5	15.85
532.0	15.88
532.5	15.92
533.0	15.95
533.5	15.99
534.0	16.02
534.5	16.06
535.0	16.09
535.5	16.13
536.0	16.16
536.5	16.19
537.0	16.23
537.5	16.26
538.0	16. 30
538.5	16.33
539.0	16.37
539.5	16.41

$\begin{gathered} V_{c} \\ (\text { Knots }) \end{gathered}$	$\begin{gathered} 9 c \\ \left({ }^{9} \mathrm{Hg}\right) \end{gathered}$
560.0	17.90
560.5	17.93
561.0	17.97
561.5	18.01
562.0	18.05
562.5	18.09
563.0	18.12
563.5	18.16
564.0	18.20
564.5	18.24
565.0	18.27
565.5	18.31
566.0	18.35
566.5	18.39
567.0	18.43
567.5	18.46
563.0	18.50
563.5	18.54
569.0	18.58
565. 5	18.62
570.0	18.66
570.5	18.70
571.0	18.73
571.5	18.77
572.0	18.81
572.5	18.85
573.0	18.89
573.5	18.93
574.0	18.97
574.5	19.01
575.0	19.05
575.5	19.09
576.0	19.12
576.5	19.16
577.0	19.20
577.5	19.24
578.0	19.28
578.5	19.32
579.0	19.36
579.5	17.40

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ \left(\operatorname{Knot}^{2}\right) \end{gathered}$	$\begin{gathered} 9{ }_{9}^{9} \\ \left(1 \mathrm{Hg}_{g}\right) \end{gathered}$
580.0	19.44
580.5	19.48
581.0	19.52
581.5	19.56
582.0	19.60
582.5	19.64
583.0	19.68
583.5	19.72
584.0	19.76
584.5	19.80
585.0	19.84
585.5	19.88
586.0	19.92
586. 5	19.96
587.0	20.00
587.5	20.04
588.0	20.08
588.5	20.12
589.0	20.16
589.5	20.20
590.0	20.25
590.5	20.29
591.0	20.33
591.5	20.37
592.0	20.41
592.5	20.45
593.0	20.49
593.5	20.53
594.0	20.57
594.5	20.62
595.0	20.66
595.5	20.70
596.0	20.74
596.5	20.78
597.0	20.82
597.5	20.86
598.0	20.91
598.5	20.95
599.0	20.99
599.5	21.03

$\begin{gathered} \mathrm{V}_{\mathrm{C}} \\ (\text { Knots }) \end{gathered}$	$\left(\begin{array}{ll} \\ \\ & H g \\ \hline \end{array}\right)$
600.0	21.07
600.5	21.12
601.0	21.16
601.5	21.20
602.0	21.24
602.5	21.29
603.0	21.33
603.5	21.37
604.0	21.41
604. 5	21.45
605.0	21.50
605.5	21.54
606.0	21.58
606.5	21.63
607.0	21.67
607.5	21.71
608.0	21.75
608.5	21.80
609.0	21.84
609.5	21.88
610.0	21.93
610.5	21.97
611.0	22.01
611.5	22.06
612.0	22.10
612.5	22.14
613.0	22.19
613.5	22.23
614.0	22.27
614.5	22. 32
615.0	22,36
615.5	22.41
616.0	22.45
616.5	22.49
617.0	22.54
617.5	22.58
618.0	22.63
618.5	22.67
619.0	22.71
619.5	22.76

$\begin{gathered} \bar{v}_{c} \\ \left(\operatorname{Knot}_{\mathrm{s}}\right) \end{gathered}$	$\left.{ }^{n}{ }^{9} \mathrm{H}_{8}\right)$
620.0	22.80
620.5	22.85
621.0	22.89
621.5	22.94
622.0	22.98
622.5	23.03
623.0	23.07
623.5	23.12
624.0	23.16
624.5	23.21
625.0	23.25
625.5	23.30
626.0	23.34
626.5	23.39
627.0	23.43
627.5	23.48
628.0	23.52
628.5	23.57
629.0	23.61
629.5	23.66
630.0	23.71
630.5	23.75
631.0	23.80
631.5	23.84
632.0	23.89
632.5	23.94
633.0	23.98
633.5	24.03
634.0	24.07
634.5	24.12
635.0	24.17
635.5	24.21
636.0	24.26
636.5	24.31
637.0	24.35
637.5	24.40
638.0	24.45
638.5	24.49
639.0	24.54
639.5	24.59

$\begin{gathered} V_{c} \\ (\text { nots }) \end{gathered}$	$\begin{gathered} \begin{array}{c} { }^{\circ} \mathrm{c} \\ \left({ }^{\circ} \mathrm{Hg}\right) \\ \hline \end{array} \\ \hline \end{gathered}$
640.0	24.63
640.5	24.68
641.0	24.73
641.5	24.78
642.0	24.82
642.5	24.87
643.0	24.92
643.5	24.97
644.0	25.01
644.5	25.06
645.0	25.11
645.5	25.16
646.0	25.20
646.5	25.25
647.0	25.30
647.5	25.35
648.0	25.40
648.5	25.44
649.0	25.49
649.5	25.54
650.0	25.59
650.5	25.64
651.0	25.69
651.5	25.73
652.0	25.78
652.5	25.83
653.0	25.88
653.5	25.93
654.0	25.98
654.5	26.03
655	26.08
655.5	26.12
656.0	26.17
656.5	26.22
657.0	26.27
657.5	26.32
658.0	26.37
658.5	26.42
659.0	26.47
659.5	26.52

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\text { Knots }) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ \left(\stackrel{n}{\mathrm{H}_{\mathrm{g}}}\right) \end{gathered}$
660.0	26.57
660.5	26.62
661.0	26.67
661.5	26.72
662.0	26.77
662.5	26.82
663.0	26.87
663.5	26.92
664.0	26.97
664.5	27.02
665.0	27.07
665.5	27.12
666.0	27.17
666.5	27.22
667.0	27.27
667.5	27.32
668.0	27.37
668.5	27.43
669.0	27.48
669.5	27.53
670.0	27.58
670.5	27.63
671.0	27.68
671.5	27.73
672.0	27.78
672.5	27.83
673.0	27.89
673.5	27.94
674.0	27.99
674.5	28.04
675.0	28.09
675.5	28.14
676.0	28.20
676.5	28.25
677.0	28.30
677.5	28.35
678.0	28.40
678.5	28.46
679.0	28.51
679.	28.56

V_{c} (Knots)	$\mathrm{q} \mathrm{q}_{\mathrm{c}}$ $(\underline{\mathrm{Hg}})$ 680.0 680.5
68.61	
681.0	28.67
681.5	28.72
632.0	28.82
682.5	28.88
683.0	28.93
683.5	28.98
684.0	29.04
684.5	29.09
685.0	29.14
685.5	29.19
686.0	29.25
686.5	29.30
687.0	29.35
687.5	29.41
688.0	29.46
688.5	29.51
689.0	29.57
689.5	29.62
690.0	29.68
690.5	29.73
691.0	29.78
691.5	29.84
692.0	29.89
692.5	29.95
693.0	30.00
693.5	30.05
694.0	30.11
694.5	30.16
695.0	30.22
695.5	30.27
696.0	30.33
696.5	30.38
697.0	30.43
697.5	30.49
698.0	30.54
698.5	30.60
699.0	30.65
699.5	30.71

$\begin{gathered} V_{c} \\ (\text { Knots }) \\ \hline \end{gathered}$	$\left(\begin{array}{c} \left.{ }^{9}{ }^{\mathrm{n}} \mathrm{Cg}\right) \\ \hline \end{array}\right.$
700.0	30.76
700.5	30.82
701.0	30.87
701.5	30.93
702.0	30.98
702.5	31.04
703. 0	31.09
703.5	31.15
704. 0	31.20
704.5	31.26
705.0	31.32
705.5	31.37
706.0	31.43
706.5	31.48
707.0	31.54
707.5	31.59
708.0	31.65
708.5	31.71
709.0	31.76
709.5	31.82
710.0	31.88
710.5	31.93
711.0	31.99
711.5	32.04
712.0	32.10
712.5	32.16
713.0	32.21
713.5	32.27
714.0	32.33
714.5	32.38
715.0	32.44
715.5	32.50
716.0	32.55
716.5	32.61
717.0	32.67
717,5	32.73
718.0	32.78
718.5	32.84
719.0	32.90
719.5	32.95

TABLE 9.6

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ \text { (Knot } \text {) } \end{gathered}$	$\left(\begin{array}{c} 9 \mathrm{c} \\ (\mathrm{Hg}) \end{array}\right.$
720.0	33.01
720.5	33.07
721.0	33.13
721.5	33.19
722.0	33.24
722.5	33.30
723.0	33.36
723.5	33.42
724.0	33.47
724.5	33.53
725.0	33.59
725.5	33.65
726.0	33.71
726.5	33.76
727.0	33.82
727.5	33.88
720.0	33.94
728.5	34.00
729.0	34.06
729.5	34.11
730.0	34.17
730.5	34.23
731.0	34.29
731.5	34.35
732.0	34.41
732.5	34.47
733.0	34.53
733.5	34.59
734.0	34.64
734.5	34.70
735.0	34.76
735.5	34.82
736.0	34.88
736.5	34.94
737.0	35.00
737.5	35.06
738.0	35.12
738.5	35.18
739.0	35.24
739.5	35.30

TABLE 9.6

$\left.\begin{array}{c} \mathrm{V}_{\mathrm{c}} \\ (\text { Knot } \mathrm{s} \end{array}\right)$	$\begin{gathered} 9 \mathrm{C} \\ (\mathrm{n} \\ \mathrm{Hg}) \end{gathered}$
740.0	35.36
740.5	35.42
741.0	35.48
741.5	35.54
742.0	35.60
742.5	35.66
743.0	35.72
743.5	35.78
744.0	35.84
744.5	35.90
745.0	35.96
74.5 .5	36.02
746.0	36.08
746.5	36.14
747.0	36.20
747.5	36.26
748.0	36.32
748.5	36.38
749.0	36.44
749.5	36.50
750.0	36.56
750.5	36.63
751.0	36.69
751.5	36.75
752.0	36.81
752.5	36.87
753.0	36.93
753.5	36.99
754.0	37.05
754.5	37.12
755.0	37.18
755.5	37.24
756.0	37.30
756.5	37.36
757.0	37.42
757.5	37.49
758.0	37.55
758.5	37.61
759.0	37.67
759.5	37.73

V_{c}	q_{c}
(Knots)	$(n \mathrm{Hg})$
760.0	37.80
760.5	37.86
761.0	37.92
761.5	37.98
762.0	38.04
762.5	38.11
763.0	38.17
763.5	38.23
764.0	38.29
764.5	38.36
765.0	38.42
765.5	38.48
766.0	38.54
766.5	38.61
767.0	38.67
767.5	38.73
768.0	38.80
768.5	38.86
769.0	38.92
769.5	38.98
770.0	39.05
770.5	39.11
771.0	39.17
771.5	39.24
772.0	39.30
772.5	39.36
773.0	39.43
773.5	39.49
774.0	39.55
774.5	39.62
775.0	39.68
775.5	39.75
776.0	39.81
776.5	39.87
777.0	39.94
777.5	40.00
778.0	40.07
778.5	40.13
779.0	40.19
779.5	40.26

$\begin{gathered} V_{c} \\ \left(\mathrm{Knot}^{2}\right) \end{gathered}$	${ }^{9}{ }^{9} \mathrm{Hg} \text {) }$
780.0	40.32
780.5	40.39
781.0	40.45
781.5	40.52
782.0	40.58
782.5	40.64
783.0	40.71
783.5	40.77
784. C	40.84
784.5	40.90
785.0	40.97
785.5	41.03
786.0	41.10
786.5	41.16
787.0	41.23
787.5	41.29
788.0	41.36
788.5	41.42
789.0	41.49
789.5	41.55
790.0	41.62
790.5	41.68
791.0	41.75
791.5	41.81
792.0	41.88
792.5	41.95
793.0	42.01
793.5	42.08
794.0	42.14
794.5	42.21
795.0	42.27
795.5	42.34
796. 0	42.41
796.5	42.47
797.0	42.54
797.5	42.60
798.0	42.67
798.5	42.74
799.0	42.80
799.5	42.87

(Knote)	$\because{ }_{-}^{9}{ }_{\mathrm{Hg}}^{\mathrm{H}}$
800.0	42.94
800.5	43.00
801.0	43.07
801.5	43.14
802.0	43.20
802.5	43.27
803.0	43.34
803.5	43.40
804. 0	43.47
804. 5	43.54
805.	
805. 5	
806.0	43.74
806.5	43.80
807.0	43.87
807.5	43.94
808.0	44.01
808.5	44.07
809.0	
809.5	44.21
810	
810.5	44.34
811.0	44. 41
811.5	44.48
812.0	44.55
812.5	44.61
\$13.0	44.68
813.5	44.75
814.0	44.82
814.5	44.89
815.0	
815.5	45.02
816.0	45.09
816.5	45.16
817.0	45.23
817.5	45.29
818.0	45.36
818.5	45.43
819.0	45.50
819.5	45.

$\begin{gathered} V_{c} \\ (\text { Knots }) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{c}} \\ (\mathrm{Hg}) \\ \hline \end{gathered}$
820.0	45.64
820.5	45.70
821.0	45.77
821.5	45.84
822.0	45.91
822.5	45.98
823.0	46.05
823.5	46.12
824.0	46.19
824.5	46.25
825.0	46.32
825.5	46.39
826.0	46.46
826.5	46.53
827.0	46.60
827.5	46.67
828.0	46.74
828.5	46.81
829.0	46.88
829.5	46.95
830.0	47.02
830.5	47.09
831.0	47.16
831.5	47.23
832.0	47.30
832.5	47.37
833.0	47.44
833.5	47.51
834. 0	47.58
834.5	47.65
835.0	47.72
835.5	47.79
836.0	47.86
836.5	47.93
837.0	48.00
837.5	48.07
838.0	48.14
838.5	48.21
839.0	48.28
839.5	48.35

(Knots)	$\left({ }^{(1)} \mathrm{Hg}\right)$
840.0	48.42
840.5	48.49
841.0	48.56
841.5	48.63
842.0	48.70
842.5	48.77
843.0	48.84
843.5	48.91
844.0	
844.5	49.06
845.0	49.13
845.5	49.20
846.0	49.27
846.5	49.34
847.0	49.41
847.5	49.48
848.0	49.55
848.5	49.63
849.0	49.70
849.5	49.77
850.0	49.84
850.5	49.91
851.0	49.98
851.5	50.06
852.0	50.13
852.5	50.20
853.0	50.27
853.5	50.34
854.0	50.42
854.5	50.49
855.0	
855.5	50.63
856.0	50.70
856.5	50.78
857.0	50.85
857.5	50.92
858.0	50.99
858.5	51.07
859.0	51.14
859.5	51.21

$\begin{gathered} V_{c} \\ (\text { Knot }) \end{gathered}$	$\begin{gathered} { }^{9} \mathrm{C} \\ (\stackrel{\mathrm{H}}{\mathrm{Hg}}) \end{gathered}$
860.0	51.28
860.5	51.36
861.0	51.43
861.5	51.50
862.0	51.57
862.5	51.65
863.0	51.72
863.5	51.79
864.0	51.87
864.5	51.94
865.0	52.01
865.5	52.09
866.0	52.16
866.5	52.23
867.0	52. 30
867.5	52.38
868.0	52.45
868.5	52.53
869.0	52.60
869.5	52.67
870.0	52.75
870.5	52.82
871.0	52.89
871.5	52.97
872.0	53.04
872.5	53.11
873.0	53.19
873.5	53.26
874.0	53.34
874.5	53.41
875.0	53. 48
875.5	53.56
876.0	53.63
876.5	53.71
877.0	53. 78
877.5	53.86
878.0	53.93
878.5	54. 01
879.0	54. 08
879.5	54.15

$\begin{gathered} \mathrm{V}_{\mathrm{C}} \\ (\mathrm{Knot} \mathrm{~s}) \end{gathered}$	$\begin{gathered} { }^{\mathrm{qc}} \\ \left(\text { (11 }^{\mathrm{Hg}}\right. \text {) } \end{gathered}$
880.0	54.23
880.5	54.30
831.0	54.38
831.5	54.45
832.0	54.53
882. 5	54.60
883.0	54.68
883.5	54.75
884.0	54.83
884.5	54.90
885.0	54.98
885.5	55.05
836.0	55.13
886.5	55.201
887.0	55.28
837.5	55.35
858.0	55.43
388.5	55.50
889.0	55.58
889.5	55.66
890.0	55.73
890.5	55.81
891.0	55.88
891.5	55.96
892.0	56.03
892. 5	56.11
893.0	56.19
893.5	56, 26
894.0	56.34
894.5	56.41
895.0	56.49
895.5	56.57
896.0	56.64
896.5	56.72
897.0	56.79
897.5	56.87
898.0	56.95
898. 5	57.02
899.0	57.10
897. 5	57.18

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ \text { (Knots }) \end{gathered}$	$\left(\begin{array}{c} \mathrm{q}_{\mathrm{c}}^{\mathrm{Hg}} \end{array}\right)$
900.0	57.25
900.5	57.33
901.0	57.41
901.5	57.48
902.0	57.56
902.5	57.64
903.0	57.71
903.5	57.79
904.0	57.87
904.5	57.95
905.0	58.02
905.5	58.10
906.0	58.18
906.5	58.25
907.0	58.33
907.5	58.41
908.0	58.49
908.5	58.56
909.0	58.64
909.5	58.72
910.0	58.80
910.5	58.87
911.0	58.95
911.5	59.03
912.0	59.11
912.5	59.18
913.0	59.26
913.5	59.34
914.0	59.42
914.5	59.50
915.0	59.57
915.5	59.65
916.0	59.73
916.5	59.81
917.0	54.89
917.5	54.97
915.0	60.04
918.5	60.12
919.0	60.20
919.5	60.23

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\mathrm{Knots}) \end{gathered}$	$\left({ }^{\left(n^{4} \mathrm{C}\right.} \mathrm{Hg}\right)$
920.0	60.36
920.5	50.44
921.0	60.51
921.5	60.59
922.0	60.67
922.5	60.75
923.0	60.83
923.5	60.91
924.0	60.99
924.5	61.07
925.0	61.15
925.5	61.22
926.0	61.30
926.5	61. 38
927.0	61.46
927.5	61.54
928.0	61.62
928.5	61.70
929.0	61.78
929.5	61.86
930.0	61.94
930.5	62.02
931.0	62. 10
931.5	62.18
932.0	62. 26
932.5	62. 34
933.0	62.42
933.5	62.50
934.0	62.58
934.5	62.66
935.0	62. 74
935.5	62.82
936.0	62.90
936.5	62.98
937.0	63.06
937.5	63.14
938.0	63.22
938.5	63.30
939.0	63.38
939.5	63.46

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ (\text { Knots) } \end{gathered}$	$\left({ }^{2} \mathrm{H} \mathrm{Hg}\right)$
940.0	63.54
940.5	63.62
941.0	63.70
941.5	63.78
942.0	63.86
942.5	63.94
943.0	64.02
943.5	64.10
944.0	64.18
944.5	64.27
945.0	64.35
945.5	64.43
946.0	64.51
946.5	64.59
947.0	64.67
947.5	64.75
948.0	64.83
948.5	64.91
949.0	65.00
949.5	65.08
950.0	65.16
950.5	65.24
951.0	65.32
951.5	65.40
952.0	65.48
952.5	65.57
953.0	65.65
953.5	65.73
954.0	65.81
954.5	65.89
955.0	65.98
955.5	66.06
956.0	66, 14
956.5	66.22
957.0	66.30
957.5	66.39
958.0	66.47
958.5	66.55
959.0	66.63
959.5	66.72

$\begin{gathered} V_{c} \\ \text { Knota } \\ \hline \end{gathered}$	$\left({ }_{(0}{ }^{\mathrm{H}} \mathrm{H}\right)$
960.0	66.80
960.5	66.88
961.0	66.96
961.5	67.04
962.0	67.13
962.5	67.21
963.0	67.30
963.5	67.38
964.0	67.46
964.5	67.54
965.0	67.62
965.5	67.71
966.0	67.79
966.3	67.87
967.0	67.96
967.5	68.04
968.0	68.12
968.5	68.21
969.0	68.29
969.5	68.37

$\begin{gathered} V_{c} \\ \text { (Knote) } \end{gathered}$	$\begin{gathered} { }^{9}{ }_{c} \\ \left.\left({ }^{H}\right)_{c}\right) \end{gathered}$
970.0	68.46
970.5	68.54
971.0	68.62
971.5	68.71
972.0	68.79
972.5	68.87
973.0	68.96
973.5	69.04
974.0	69.12
974.5	69.21
975.0	69.29
975.5	69.38
976.0	69.46
976.5	69.54
977.0	69.63
977.5	69.71
978.0	69.80
978.5	69.88
979.0	69.96
979.5	70.05

$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ \text { (Knots) } \end{gathered}$	$\begin{gathered} { }^{9}{ }_{c} \\ \left({ }^{(} \frac{\mathrm{H}}{\mathrm{~m}} \mathrm{~g}\right) \end{gathered}$
980.0	70.13
980.5	70.22
981.0	70.30
981.5	70.39
982.0	70.47
982.5	70.55
983.0	70.64
983.5	70.72
984.0	70.81
984.5	70.89
985.0	70.98
985.5	71.06
986.0	71.15
986.5	71.23
987.0	71.32
987.5	71.40
988.0	71.49
988.5	71.57
989.0	71.66
989.5	71.74

$\begin{gathered} \mathbf{V}_{\mathbf{c}} \\ \text { (Knote) } \\ \hline \end{gathered}$	$\begin{gathered} 9_{c} \\ \left(\frac{\mathrm{Hg}}{\mathrm{H}}\right) \end{gathered}$
990.0	71.83
990.5	71.91
991.0	72.00
991.5	72.08
992.0	72.17
992.5	72.26
993.0	72.34
993.5	72.43
994.0	72.51
994.5	72.60
995.0	72.68
995.5	72.77
996.0	72.86
996.5	72.94
997.0	73.03
997.5	73.11
998.0	73.20
998.5	73.29
999.0	73.37
999.5	73.46
1000,0	73.54

TABLE 9.7

Conversion Formulee - Fahrenheit, Centigrade and Rankine

Fahrenheit to Centigrade

$$
c=\frac{2}{9}(p-32)
$$

Fahrenbeit to Rankipe

$$
R=F+459.7
$$

Cenilgrade to Fahrenheit

$$
F=\frac{2}{5} c+32
$$

Centigrade to Rankine

$$
R=\frac{2}{5} c+491.7
$$

Rankine to Fahrenheit

$$
F=R-459.7
$$

Rankine to Centigrade

$$
C=\frac{5}{9}(R-491.7)
$$

CONVERSION TABLE

${ }^{\circ} \mathrm{C}$		F			$\bullet 5$	${ }^{\circ} \mathrm{C}$		OF
-169.4	-273	-459.4	-138.9	-218	-360.4	-108.3	-163	-261.4
-168.9	-272	-457.6	-138.3	-217	-358.6	-107.8	-162	-259,6
-168.3	-271	-455.8	-137.8	-216	-356.8	-107.2	-161	-257.8
-157.8	-270	-454.0	-137.2	-215	-355.0	-106.7	-160	-256,0
-167.2	-269	-452.2	-136.7.	-214	-353.2	-106.1	-159	-254,2
-166.7	-268	-450.1	-136.1	-213	-351.4	-105.6	-158	-252.4
-166.1	-267	-448.6	-135.6	-212	-349.6	-105.0	-157	-250,6
-165.6	-266	-446.8	-135.0	-211	-347.8	-104.4	-156	-248,8
-165.0	-265	-445.0	-134.4	-210	-346.0	-103.9	-155	-247.0
-164.4	-264	-443.2	-133.9	-209	-344.2	-103.3	-154	-245.2
-163.9	-263	-441. 4	-133.3	-208	-342.4	-102.8	-153	-243.4
-263.3	-262	-439.6	-132.8	-207	- 340.6	-102.2	-152	-241.6
-162.8	-261	-437.8	-132.2	-206	-338.8	-101.7	-151	-239.8
-162.2	-260	-436.0	-131.7	-205	-337.0	-101.1	-150	-238.0
-161.7	-259	-434.2	-131.7	-204	- 335.2	-100.6	-149	-236.2
-161.1	-258.	-432.4	-130.6	-203	-333.4	-100.0	-148	-234.4
-160.6	-25?	-430.6	-130.0	-202	-331.6	-99.4	-147	-232.6
-160.0	-256	-428.8	-129.4	-201	-329.8	-98.9	-146	-230.8
-159.4	-255	-427.0	-128.9	-200	-328.0	-98.3	- $三 145$	-229.0
-158.9	-254	-425.2	-128.3	-199	-326.2	-97.8	-124	-227.2
-158.3	-253	-423.4	-127.8	-198	-32L. 4	-97.2	-143	-225.4
-157.8	-252	-421.6	-127.2	-197	-322.6	-96.7	-142	-223.6
-157.2	-251	-419.8	-126.7	-196	-320.8	-96.1	-141	-221.8
-156.7	-250	-478.0	-126.1	-195	-319.0	-95.6	-140	-220.0
-156.1	-249	-412.2	-125.6	-194	-317.2	-95.0	-139	-21.8.2
-155.6	-248	-414.4	-125.0	-193	-315.4	-94.4	-138	-216.4
-155.0	-247	-412.0	-124.4	-192	-313.6	-93.9	-137	-214.6
-154.4	-246	-410.8	-123.9	-191	-311.8	-93.3	-136	-212.8
-153.9	-245	-409.0	-123.3	-190	-310.0	-92.8	-135	-211.0
-153.3	-244	-407.2	-122.8	-189	-308.2	-92.2	-134	-209.2
-152.8	-243	-405.4	-122.2	- 188	-306.4	-91.7	-133	-207.4
-152.2	-242	-1403.6	-121.7	-187	-304.6	-91.1	-1.32	-205.6
-151.7	-217	-401.8	-121.1	-186	-302.8	-90.6	-131	-203.8
-151.1	-240	-400.0	-120.6	-185	-301.0	-90.0	-130	-202.0
-150.6	-239	-398.2	-120.0	-184	-299.2	-89.4	-129	-200.2
-150.0	-238	-396.4	-119.4	-183	-297.4	-88.9	-128	-198.4
-149. 4	-237	-394.6	-118.9	-182	-295.6	-88.3	-127	-196.6
-148.9	-236	-392.8	-118.3	-181	-293.8	-87.8	-126	-194.8
-148.3	-235	-391.0	-117.8	-180	-292.0	-87.2	-125	-193.0
-147.8	-234	-389.2	-117.2	-179	-290.2	-86.7	-124	-191.2
-147.2	-233	-387.4	-176.7	-178	-288.4	-86.1	-123	-189.4
-146.7	-232	-385.6	-116.1	-177	-286.6	-85.6	-122	-187.6
-1146.1	-231	-383.8	-115.6	-176	-284.8	-85.0	-122	-185.8
-145.6	-230 -229	-382.0	-115.0	-175	-283.0	-84.4		-184.0
-145.0 -144.4	-229	-380.2 -378.4	-114.4	-174 -173	-281.2	-83.9		-182.2
-143.9	-227	-376.6	-113.3	-172	-277.6	-83.3 -82.8		-180.4
-1143.3	-226	- 374.8	-112.8	-17	-275.8	-82.2		-176.8
-142.8	-225	-373.0	-112.2	-170	-274.0	-81.7		-175.0
-142.2	-224	-371.2	-111.7	-169	-272.2	-81.1		-173.2
-141.7	-223	-369.4	-111.1	-168	-270.4	-80.6		-1.71.4
-1417.1	-222	-367.6	-110.6	-167	-208.6	-80.0		-169.6
-140.6 -140.0	-221 -220	-365.8 -364.0	-110.0	-166	-266,8	-79.4		-167.8
-140.0 -139.4	-220 -219	-364.0 -362.2	-109.4 -108.9	-165 -164	-265.0 -263.2	-78.9		-166.0
-139.4	-219	-362.2	-108.9	-164	-263.2	-78.3		-164.2

CONVERSION TABLE

${ }^{\circ} \mathrm{C}$		4	${ }^{\circ} \mathrm{C}$		${ }^{9} \mathrm{~F}$	${ }^{\circ} \mathrm{C}$		${ }^{-1}$
-77.8	-108	-102.4	-47.2	-53	-6.3.4	-16.7	2	35.6
-77.2	-107	-160.6	-46.7	-52	-61.6	-16.1	3	37.4
-76.7	-106	-. 158.8	16.1	-51	-59.8	-15.6	4	39.2
-76.1	-105	-157.0	-45.6	-50	-58.0	-15.0	5	14.0
-75.6	-104	-155.2	- 45.0	-49	-56.2	-14.4	6	42.8
275.0	-103	-153.4	-4.4.4	-48	-54.4	-13.9	7	44.6
-77.4	-102	-151.6	-43.9	-47	-52.6	-13.3	8	46.4
-73.9	-101	-149.8	-43.3	-4. 6	-50.8	-12.8	9	48.2
-73.3	-100	-148.0	-42.8	-4.5	- 49.0	-12.2	10	50.0
-72.8	-99	-146.2	-42.2	-4.4	-47.2	-11.7	11	51.8
-72.2	-98	-144. 4	-4.7	-43	-45.4	-11.1	12	53.6
-71.7	-97	-142.6	-412.1	-42	-43.6	-10.6	13	55.4
-71.1	-96	-140.8	-40.6	-41	-4. 4	-10.0	14	57.2
-70.0	-95	-139.0	-40.0	-40	-40.0	-9.4	15	59.0
-70.0	-94	-137.2	-39.4	-39	-38.2	-8.9	16	60.8
-60.1:	-93	-135.4	-38.9	-38	-36.4.	-8.3	17	62.6
-68.9	-92	-133.6	-38.3	-37	-34.6	-7.8	18	64.4
-68.3	-91	-131.8	-37.8	-36	-32.8	-7.2	19	66.2
-67.8	-90	-130.0	-37.2	-35	-31.0	-6.7	20	68.0
-67.2	-89	-128.2	-36.7	-34	-29.2	-6.1	21	69.8
-66.7	-88	-126.4	-36.1	-33	-27.4	-5.6	22	7.6
-66.1	-87	-124.6	-35.6	-32	-25.6	-5.0	23	73.4
-65.6	-86	-122.8	-35.0	-31	-23.8	-4.4	24	75.2
-65.0	-85	-121.0	-34.4	-30	-22.0	-3.9	25	77.0
-64.4	-84	-119.2	-33.9	-29	-20.2	-3.3	26	78.8
-63.9	-83	-117.4	-33.3	-28	-18.4	-2.8	27	. 80.6
-63.3	-82	-115.6	-32.8	-27	-16.6	-2.2	28	82.4
-62.8	-81	-113.8	-32.2	-26	-14.8	-1.7	29	84.2
-62.2	-80	-112.0	-31.7	-25	-13.0	-1.1	30	86.0
-61.7	-79	.-110.2	-31.1	-24	-11.2	-0.6	31	87.8
-61.1	-78	-108. 4	-30.6	-23	-9.4	0	32	89.6
-60.6	-77	-106.6	-30.0	-22	-7.6	0.6	33	91.4
-60.0	-76	-104. 8	-29.4	-21	-5.8	1.1	34	93.2
-59.4	-75	-103.0	-28.9	-20	-4.0	1.7	35	95.0
-58.9	-74	-101.2	-28.3	-19	-2.2	2.2	36	96.8
-58.3	-73	-99.4	-27.8	-18	-0.4	2.8	37	98.6
-57.8	-72	-97.6	-27.2	-17	1.4	3.3	38	100.4
-57.2	-71	-95.8	-26.7	-16	3.2	3.9	39	102.2
-56.7	-70	-94.0	-26.1	-15	5.0	4.4	40	104.0
-56.1	-69	-92.2	-25.6	-14	6.8	5.0	41	105.8
-55.6	-68	-90.4	-25.0	-13	8.6	5.6	42	107.6
-55.0	-67	-88.6	-24.4	-12	10.4	6.1	43	109.4
-54.4	-66	-86,8	-23.9	-11	12.2	6.7	4	111.2
-53.9	-65	-85.0	-23.3	-10	14.0	7.2	45	113.0
-53.3	-64	-83.2	-22.8	-9	15.8	7.8	46	114.8
-52.8	-63	-81.4	-22.2	-8	17.6	8.3	47	116.6
-52.2	-62	-79.6	-21.7.	-7	19.4	8.9	48	118.4
-51.7	-61	-77.8	-21.10	-6	21.2	9.1:	49	120.2
-51.11	-60	-76.0	-20.6	-5	23.0	10.0	50	122.0
-50.6	-59	-74.2	-20.0	-4	24.8	10.6	51	123.8
-50.0	-58	-72.4	-19.4	-3	26.6	11.1	52	125.6
- 49.4	-57	-70.6	-18.9	-2	28.4	11.7	53	127.4
-48.9	-56	-68.8	-18.3	-1	30.2	12.2	54	129.2
-48.3	-55	-67.0	-17.8	0	32.0	12.8	55	131.0
-47.8	-54	-65.2	-17.2	1	33.8	13.3	56	132.8

CONVERSION TABLE

${ }^{\circ} \mathrm{C}$		95	${ }^{\circ} \mathrm{C}$		-	${ }^{\bullet} \mathrm{C}$		${ }^{\circ} \mathrm{F}$
13.9	57	134.6	43.9	111	231.8	73.9	165	329.0
14.4	58	236.4	44.4	112	233.6	74.4	166	330.8
15.0	59	138.2	45.0	113	235.4	75.0	16 ?	332.6
15.6	60	140.0	45.6	114	237.2	75.6	168	334.4
16.1	61	14.8	46.1	115	239.0	76.1	169	336.2
16.7	62	143.6	46.7	116	240.8	76.7	170	338.0
17.2	63	145.4	47.2	J7	242.6	77.2	17	339.8
17.8	64	147.2	47.8	18	24.4	77.8	172	341.6
18.3	65	149.0	48.3	119	24.6 .2	78.3	173	343.4
18.9	66	150.8	48.9	120	248.0	789	174	345.2
19.4	67	152.6	49.4	121	249.8	79.4	275	347.0
20.0	68	154.4	50.0	122	251.6	80.0	276	348.8
20.6	69	156.2	50.6	123	253.4	80.6	177	350.6
21.1	70	158.0	51.1	124	255.2	81.1	178	352.4
21.6	71	159.8	51.7	125	257.0	81.7	179	354.2
22.2	72	161.6	52.2	126	258.8	82.2	180	356.0
22.8	73	163.4	52.8	127	260.6	82.8	181	357.8
23.3	74	165.2	53.3	128	262.4	83.3	182	359.6
23.9	75	167.0	53.9	129	264.2	83.9	183	361.4
24.4	76	168.8	54.4	130	266.0	84.4	184	363.2
25.0	77	170.6	55.0	131	267.8	85.0	185	365.0
25.6	78	172.4	5.50	132	269.6	85.6	186	366.8
26.1	79	174.2	56.2	133	271.4	86.1	187	368.6
26.7	80	176.0	56.7	234	273.2	86.7	188	370.4
27.2	81	177.8	57.2	135	275.0	87.2	3.89	372.2
27.8	82	179.6	57.8	136	276.8	87.8	190	374.0
28.3	83	181.4	58.3	197	278.6	88.3	191	375.8
28.9	84	183.2	58.9	138	280.4	88.9	192	377.6
29.4	85	185.0	59.4	139	282.2	89.4	193	379.4
30.0	86	186.8	00.0	140	284.0	90.0	194	381.2
30.6	87	188.6	60.6	147	285.8	90.6	195	383.0
31.1	88	190.4	61.1	142	287.6	92.1	196	384.8
32.7	89	192.2	61.7	143	289.4	91.7	197	386.6
32.2	90	194.0	62.2	1445	291.2	92.2	198	388.4
32.8	97	195.8	62.8	11.5	293.0	92.2 92.8	199	380.4 390.2
33.3	92	197.6	63.3	146	294.0	93.3	200	392.0
33.9	93	199.4	63.9	147	296.6	93.9	201	393.8
34.4	94	$2 \mathfrak{7} .2$	64.4	148	298.4	94.4	202	395.6
35.0	95	203.0	65.0	149	300.2	95.0	203	397.4
35.6	96	204.8	65.6	150	302.0	95.6	204	399.2
36.1	97	206.5	66.1	151	303.8	96.1	205	401.0
36.7	98	208.4	66.7	152	305.6	96.7	206	402.8
37.2	99	210.2	67.2	153	307.4	97.2	207	L04. 6
37.8	100	212.0	67.8	154	309.2	97.8	208	406.4
38.3	101	213.8	68.3	155	311.0	98.3	209	L08.2
38.9	202	215.6	68.9	156	312.8	08.9	210	410.0
39,4	103	217.4	69.4	157	314.6	99.4	211	41.8
40.0	104	219.2	70.0	. 2.58	3.6 .4	100.0	212	43.6
40.6	205	221.0	70.6	1.59	318.2	100.6	213	415.4
42.1.	106	222.8	71.7	160	320.0	101.1	214	47.2
4.7	107	224.6	71.7	161	321.8	101.7	215	149.0
42.2 42.8	108	226.4	72.2	162	323.6	102.2	216	420.8
42.8 43.3	109 110	236.2 230.0	72.8 73.3	163 164	325.4	102.8	217	422.6
		230.0	13.3	164	3 7 7.2	103.3	218	424.4

CONVERSION TABLE

${ }^{\circ} \mathrm{C}$		${ }^{9}$	${ }^{\bullet} \mathrm{C}$		-F	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$
103.9	219	426.2	133.9	273	523.4	163.9	327	620.6
104.4	220	428.0	134.4	274	525.2	164.4	328	622.4
105.0	22	429.8	135.0	275	527.0	165.0	329	624.2
105.6	222	431.6	135.6	276	528.8	165.6	330	626.0
106.1	223	433.4	136.1	277	530.6	166.7	332	627.8
106.7	224	435.2	136.7	278	532.4	166.7	332	629.6
207.2	225	437.0	137.2	279	534.2	167.2	333	631.4
107.8	226	438.8	137.8	280	536.0	167.8	334	633.2
108.3	227	4.40 .6	138.3	281	537.8	168.3	335	635.0
108.9	228	442.4	138.9	282	539.6	168.9	336	636.8
109.4	229	$4 山 4.2$	139.4	283	542.4	169.4	337	638.6
110.0	230	446.0	140.0	284	543.2	170.0	338	640.4
210.6	231	447.8	140.6	285	545.0	170.6	339	642.2
111.1	232	4.49 .6	141.1	286	546.8	171.1	340	64.0
111.7	233	451.4	14.7	287	548.6	171.7	341	645.8
112.2	234	453.2	142.2	288	550.4	172.2	342	64, 6
112.8	235	455.0	142.8	289	552.2	272.8	343	649.4
113.3	236	456.8	143.3	C90	554.0	173.3	344.	651.2
113.9	237	458.6	143.9	291	555.8	173.9	345	653.0
114.4	238	460.4	144.4	292	557.6	17404	346	654.8
115.0	233	462.2	145.0	293	559.4	175.0	347	656.6
115.6	240	464.0	145.6	294	562.2	175.6	348	658.4
116.1	241	465.8	146.1	295	563.0	276.1	349	650.2
116.7	24.	467.6	146.7	296	564.8	176.7	350	562.0
117.2	243	469.4	147.2	297	566.6	177.2	351	663.3
117.8	24	471.2	247.8	298	568.4	177.8	352	665.6
118.3	245	473.0	148.3	299	570.2	178.3	353	667.4
118.9	246	474.8	148.9	300	572.0	178.9	354	669.2
129.4	247	476.6	149.4	301	573.8	179.4	355	671.0
120.0	248	478.4	150.0	302	575.6	180.0	356	672.8
120.6	249	480.2	150.6	303	577.4	180.6	357	674.6
121.1	250	482.0	151.1	304	579.2	181.1	358 359	. 676.4
121.7	251	483.8	151.7	305	581.0	181.7 182.2	359 360	678.2
122.2	252	485.6	152.2	306	582.8	182.2 182.8	360	680.0
122.8	253	487.4	152.8	307	584.6	182.8	361	681.8
123.3	254	489.2	153.3	308	586.4	183.9 183.9	362 363	683.6
123.9	255	491.0	253.9	309	588.2	183.9 184.4	363 364	685.4 687.2
124.4	256	492.8	254.4	310	590.0	184.4 185.0	364 355	687.2 689.0
125.0	257	494.6	155.0	311	591.8	185.0 185.6	365 366	689.0 690.8
125.6	258	496.4	155.6	312	593.6	185.0 186.1	366 367	690.8 692.6
126.1 126.7	259 260	498.2 500.0	156.1	313 314	595.4 597.2	186.1 186.7	368	692.6 694.4
127.2.	261	501.8	157.2	315	599.0	187.2	369	696.2
127.3	262	503.6	157.8	316	600.8	187.8	370	698.0
228.3	263	505.4	158.3	317	602.6	188.3	371	699.8
120.9	264	507.2	158.9	31.8	604.4	188.9	372 373	701.6
129.4	265	509.0	159.4	319	606.2	189.4 190.0	373 374	703.4
130.0	266	510.8	160.0	320	008.0	190.0 190.6	374 375	705.2
130.6	267	512.6	160.6	321	609.8	190.6 191.1	375 376	707.0 708.8
131.1	268	514.4	161.1	322	611.6	191.1	377	708.8 710.8
131.7 132.2	269	$516 . ?$ 518.0	161.7 162.2	323 324	613.4 615.2	191.7 192.2	377 378	710.8 712.4
132.2 132.8 133.2	270	519.8	162.2 162.8	325	615.2 617.0	192.8	379	714.2
133.5	272	521.6	263.3	326	618.8	193.3	380	76.0

CONVERSION TABLE

${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$		9 F
193.9	381	77.8	223.9	435	815.0
194.4	382	779.6	224.4	436	816.8
195.0	383	721.4	225.0	437	818.6
295.6	384	723.2	225.6	438	820.4
196.1	385	725.0	226.1	439	822.2
196.7	386	726.8	226.7	440	824.0
197.2	387	728.6	227.2	414	825.8
197.8	388	730.4	227.8	442	827.6
198.3	389	732.2	228.3	443	829.4
198.9	390	734.0	228.9	ity	831.2
199.4	391	735.8	229.4	445	833.0
200.0	392	737.6	230.0	446	834.8
200.6	393	739.4	230.6	447	836.6
201.1	394	741.2	231.1	148	838.4
201.7	395	743.0	231.7	449	340.2
202.2	396	744.8	232.2	450	842.0
202.8	397	746.6	232.8	451	843.8
203.3	398	748.4	233.3	452	84.5 .6
203.9	399	750.2	233.9	453	847.4
204.4	400	752.0	234.4	454	849.2
205.0	401	753.8	235.0	455	851.0
205.6	402	755.6	235.6	456	852.8
206.1	403	757.4	236.1	457	854.6
206.7	404	759.2	236.7	458	856.4
207.2	405	761.0	237.2	459	858.2
207.8	406	762.8	237.8	460	860.0
208.3	407	764.6	238.3	461	861.8
208.9	408	766.4	238.9	462	863.6
209.4	409	768.2	239.4	463	865.4
210.0	40	770.0	240.0	464	867.2
210.6	41	77.8	240.6	465	869.0
211.1	42	773.6	24.1	466	870.8
211.7	423	775.4	241.7	4.67	872.6
212.2	4	777.2	242.2	468	874.4
212.8	45	779.0	242.8	469	876.2
213.3	416	780.8	243.3	470	878.0
213.9	417	782.6	243.9	471	879.8
214.4	48	784.4	244.4	472	881.6
215.0	49	786.2	245.0	473	883.4
215.6	420	788.0	245.6	474	885.2
216.1	421	789.8	246.1	475	887.0
216.7	422	791.6	246.7	476	888.8
217.2	423	793.4	247.2	477	890.6
217.8	424	795.2	247.8	478	892.4
218.3	425	797.0	248.3	479	894.2
218.9	426	798.8	248.9	480	896.0
219.4	427	800.6	249.4	481	897.8
220.0	428	802.4	250.0	482	899.6
220.6	429	804.2	250.6	483	301.4
221.1	430	806.0	251.1	484	903.2
221.7	431	807.8	251.7	485	905.0
222.2	432	809.6	252.2	486	906.8
222.8	433	811.4	252.8	487	908.6
223.3	434	813.2	253.3	488	910.4

${ }^{\circ} \mathrm{C}$		
253.9	.489	.912 .2
254.4	490	91.0
255.0	491	915.8
255.6	492	917.6
250.1	493	919.4
256.7	494	921.2
257.2	495	923.0
257.8	496	92.8
258.3	497	926.6
258.9	498	928.4
250.4	199	930.2
260.0	500	932.0
260.6	501	933.8
261.1	502	935.6
261.7	503	937.4
262.2	504	939.2
262.8	505	941.0
263.3	506	942.3
263.9	507	944.6
264.4	508	946.4
265.0	509	948.2
265.6	510	950.0
266.1	511	951.8
266.7	512	953.6
267.2	513	955.4
267.8	514	957.2
268.3	515	959.0
268.9	516	960.8
269.4	517	962.6
270.0	518	964.4
270.6	519	966.2
271.1	520	968.0
271.7	521	969.8
272.2	522	971.6
272.8	523	973.4
273.3	524	975.2
273.9	525	977.0
274.4	526	97.8
275.0	527	980.6
275.6	528	982.4
276.1	529	984.2
276.7	530	986.0
277.2	531	987.8
277.8	532	989.6
278.3	533	991.4
278.9	534	993.2
279.4	535	995.0
280.0	536	996.8
280.6	537	998.6
281.1	538	1000.4.
281.7	539	1002.2
282.2	540	1004.0
282.8	541	1005.8
283.3	542	2907.6
		7.0

CONVERSION TABLE

${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ}$		0_{i}	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$
283.9	543	1009.4	313.9	597	1106.6	343.9	651	1203.8
284.4	544	1011.2	314.4	598.	1108.4	34.4	652	1205.6
285.0	545	1013.0	315.0	599	1110.2	31550	653	1207.4
$\therefore 285.6$	546	1014.8	315.6	600	1112.0	345.6	654	1209.2
286.1	547	1016.6	316.1	601	1113.8	346.1	655	1211.0
286.7	548	1018.4	316.7	602	1115.6	346.7	656	1212.8
287.2	549	1020.2	317.2	603	1117.4	347.2	657	1214.6
287.8	550	1022.0	317.8	604	1119.2	347.8	658	1216.4
288.3	551	1023.8	318.3	605	1121.0	348.3	659	1218.2
288.9	552	102516	318.9	606	1122.8	348.9	660	1220.0
289.4	553	1027.4	319.4	60 ?	1124.6	349.4	661	1220.8
290.0 290.6	554	1029.2	320.0	608	1126.4	350.0	662	1223.6
290.6	555	1031.0	320.6	609	1128.2	350.6	663	1225.4
.291 .1 291.7	556	1032.8 1034.6	321.1	610	1130.0	351.1	664	1227.2
291.7 292.2	557 558	1034.6 1036.4	321.7	611	1731.8	351.7 352.2	665	1229.0
292.8	559	1038.4	322.2	612	1133.6	352.2 352.8	666	1230.8
293.3	560	1040.0	322.8	613	1135.4	352.8	667	1232.6
293.9	561	1041.8	323.3	614	1137.2	353.3	668	123404
294.4	562	1043.6	323.9	615	1139.0	353.9	669	1236.2
295.0	563	1045.4	324.4	616	1140.8	354.0	670	1238.0
295.6	504	1047.2	325.0 325.6	617 618	1142.6	355.6	671	1239.8
296.1	565	10490	325.6 326.1	619	11446.4	356.1	673	1243.4
296.7	566	1050.8	326.7	620	1148.0	356.7	674	1245.2
297.2	567	1052.6	327.2	62	1149.8	357.2	675	1247.0
297.8	568	1054.4	327.8	622	1151.6	357.8	676	1243.8
298.3	5	1056.2	328.3	623	1153.4	358.3	677	1250.6
298.9	570	1058.0	328.9	624	1155.2	358.9	678	1252.4
299.4	571	1059.8	329.4	625	1157.0	359.4	679	1254.2
300.0	572	1061.6	330.0	626	1158.8	360.0	680	1256.0
300.6 301.1	573	1063.4	330.6	627	1160.6	360.6	681	1257.8
301.1 301.7	574	1065.2	331.1	628	1162.4	361.1	682	1259.6
301.7 302.2	575	1067.0	331.7	629	1164.2	361.7	683	1261.4
302.2 302.8	576 577	1068.8	332.2	630	1166.0	362.2	684	1263.2
303.3	578	1070.6 1072.4	332.8	631	1167.8	362.8	685	1265.0
303.9	579	1074.2	333.3 333.9	632	1169.6	363.3 363	686	1266.8
304.4	580	1076.0	333.9 334.4	633	1171.4	363.9 364.4	687	1268.6
305.0	581	1077.8	335.0	634	1173.2 1175.0	365.0	688 688	1270.4
305.6	582	1079.6	335.6	636	1176.8	365.6	690	1274.0
306.1	583	1081.4	336.1	637	1178.6	366.1	691	1275.8
306.7 307.2	584 585	1083.2	336.7	638	1180.4	366.7	692	1277.6
307.2 307.8	585 586	1085.0 1086.8	337.2 3378	639	1182.2	378.2	693	1279.4
308.3	587	1088.6	337.8	640	1184.0	367.8	694	1281.2
308.9	588	1090.4	338.3 338.9	6417	1185.8	368.3	695	1283.0
309.4	589	1092.2	338.9 339.4	642	1187.6	368.9 369.4	696	1284.8
310.0	590	1094.0	340.0	643	1189.4	370.0	697	1286.6
310.6	591	1095.8	340.6	64.4	1191.2	370.6	698 699	1288.4
311.1	592	1097.6	344.1	64.6	1193.0 1194.8	371.1	699 700	1290.2 1292.0
311.7	593	1039.4	34.7	647	1196.6	37.7	701	1293.8
312.2 312.8	594	1101.2	342.2	648	1198.4	372.2	702	1295.6
312.8 313.3	595 596	1103.0 1104.8	342.8	649	1200.2	372.8	703	1297.4
313.3	596	1104.0	343.3	650	1202.0	373.?	704	1299.2

TABLE 9.1

CONVERSION TABLE

${ }^{\circ} \mathrm{C}$		${ }^{9}$
373.9	705	1301.0
37404	706	1302.8
375.0	707	2304.6
375.6	708	1306.4
376.1	709	1308.
376.7	710	1310.0
377.2	71	1311.8
377.8	712	1313.6
378.3	713	1315.4
378.9	714	1317.2
379.4	75	1319.0
380.0	76	1320.8
380.6	717	1322.6
381.1	718	$1324.4{ }^{\circ}$
381.7	719	1326.2
382.2	720	1328.0
382.6	72	1329.8
383.3	722	1331.6
383.9	723	1333.4
384.4	724	1335.2
385.0	725	1337.0
385.6	726	1338.8
386.1	727	1340.6
386.7	728	1342.4
387.2	729	1344.2
387.8	730	1346.0
388.3	731	1347.8
388.9	732	1349.6
389.4	733	1351.4
390.0	734	1353.2
390.6	735	1355.0
391.1	736	1356.8
391.7	737	1358.6
392.2	738	1360.4
392.8	739	1362.2
393.3	740	1364.0
393.9	74.	2365.8
394.4	742	1367.6
395.0	743	1369.4
395.6	744	1371.2
398.1	745	1373.0
396.7	746	1374.8
397.2	747	1376.6
397.8	748	1378.4
398.3	749	1380.2
398.9	750	1382.0
399.4	751	1383.8
400.0	752	1385.6
400.6	753	1387.4
401.1	754	1389.2
401.7	755	1391.0
402.2	756	1392.8
402.8	757	1394.6

${ }^{6}$		45
403.3	758	1396.4
403.9	759	1398.2
404.4	760	1400.0
405.0	761	1401.8
405.6	762	1403.6
406.1	763	1405.4
406.7	764	1407.2
407.2	765	1409.0
407.8	766	1410.8
408.3	767	1422.6
408.9	768	1421404
409.4	769	1416.2
40.0	770	1428.0
40.6	771	1419.8
41.1	772	1421.6
411.7	773	1423.4
W2.2	774	1425.2
42.8	775	1427.0
43.3	776	1428.8
43.9	777	1430.6
414.4	778	1432.4
415.0	779	1434.2
415.6	780	1436.0
416.1	781	1437.8
126.7	782	1439.6
47.2	763	14420.4
47.8	784	1443.2
418.3	785	1445.0
478.9	786	1446.8
129.4	787	1448.6
420.0	788	1450.4
420.6	789	1452.2
421.1	790	1454.0
421.7	791	1455.8
422.2	792	1457.6
422.8	793	1459.4
423.3	794	1461.2
423.9	795	1463.0
424.4	796	1464.8
425.0	797	1466,6
425.6	798	1468.4
426.1	799	1470.2
426.7	800	1472.0
427.2	801	1473.8
427.8	802	1475.6
428.3	803	1477.4
428.9	804	1479.2
429.4	805	1481.0
430.0	806	1482.8
430.6	807	1484.6
431.1	808	1486.4
431.7	809	1488.2
432.2	810	2490.0

c		${ }^{\circ}$
432.8	811	1491.8
433.3	812	1493.6
433.9	813	1495.4
434.4	814	1497.2
435.0	815	1499.0
435.6	816	1500.8
436.1	817	1502.6
436.7	818	1504.4
437.2	819.	1506.2
437.8	820	1508.0
438.3	82	1509.8
438.9	822	1511.6
439.4	823	1513.4
4 L 0.0	824	1515.2
440.6	825	1517.0
1	826	1518.8
441.7	827	1520.6
山 42.2	828	1522.4
42.8	$\$ 29$	1524.2
443.3	830	1526.0
443.9	831	1527.8
444.4	832	1529.6
445.0	833 :	1531.4
445.6	834	1533.2
446.1	835	1535.0
446.7	836	1536.8
447.2	837	1538.6
447.8	838	1540.4
448.3	839	1542.2
448.9	840	154400
449.4	841	1545.8
450.0	842	1547.6
450.6	843	1549.4
451.1	844	1551.2
451.7	845	1553.0
452.2	846	1554.8
452.8	847	1556.6
453.3	848	1558.4
453.9	849	1560.2
454.4	850	1562.0
455.0	851	1563.8
455.6	852	1565.0,
456.1	853	1567.4
456.7	854	1569.2
457.2	855	157.0
457.8	856	1572.8
458.3	857	1574.6
458.9	858	1576.4
459.4	859	1578.2
460.0	860	1580.0
460.6	861	1581.8
461.1	862	1583.6
461.7	863	1585.4

CONVERSION TABLE

${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$
462.2	. 864	1587.2
462.8	865	1589.0
463.3	866	1590.8
463.9	867	1592.6
464.4	868	1594.4
465.0	869	1596.2
465.6	870	1598.0
466.1	871	1599.8
466.7	872	1600.6
467.2	873	1603.4
467.8	874	1805.2
468.3	875	1607.0
468.9	876	1608.8
469.4	877	1610.6
470.0	878	1612.4
470.6	879	1614.2
471.1	880	1616.0
471.7	881	1617.8
472.2	882	1619.6
472.8	883	1621.4
473.3	884	1623.2
473.9	885	1625.0
474.4	886	1626.8
475.0	887	1628.6
475.6	888	1630.4
476.1	889	1632.2
476.7	890	1634.0
477.2	891	1635.8
477.8	892	1637.6
478.3	893	1639.4
478.9	894	1642.2
479.4	895	1643.0
480.0	896	1644.8
480.6	897	1646.6
481.1	898	1648.4
481.7	899	1650,2
482.2	900	1652.0
482.8	901	1653.8
483.3	902	1655.6
483.9	903	2657.4
484.4	904	1659.2
465.0	905	1661.0
485.6	906	1662.8
486.1	907	1664.6
486.7	908	1666.4
487.2	909	1668.2
487.8	910	1670.0
488.3	911	1671.8
488.9	912	1673.6
489.4	923	1675.4
490.0	914	1677.2
490.6	915	1679.0
491.2	916	1600.8

${ }^{9} \mathrm{C}$		9 F
491.7	91"	1682.6
492.2	918	1684.4
492.8	919	1686.2
493.3	920	1688.0
493.9	921	1689.8
494.4	922	1691.6
495.0	923	1693.4
495.6	924	1695.2
496.1	925	1697.0
496.7	926	1098.8
497.2	927	1700.6
497.8	928	1702.4
498.3	929	1704.2
498.9	930	1706.0
499.4	931	1707.8
500.0	932	2709.6
500.6	933	1711.4
501.1	934	1713.2
501.7	935	1715.0
502.2	936	1716.8
502.8	937	1718.6
503.3	938	1720.4
503.9	939	1722.2
504.4	940	1724.0
505.0	947	1725.8
505.6	942	1727.6
506.1	943	1729.4
506.7	94	1731.2
507.2	945	1733.0
507.8	946	1734.8
508.3	947	1736.6
508.9	94.8	1738.4
509.4	949	1740.2
520.0	950	1742.0
510,6	951	1743.8
511.1	952	1745.6
511.7	953	1747.4
512.2	954	1749.2
512.8	955	1751.0
513.3	756	1752.8
513.9	957	1754.6
514.4	958	1756.4
515.0	959	1758.2
525.6	960	1760.0
516.1	961	1761.8
516.7	962	1763.6
517.2	963	1765.4
517.8	964	2767.2
518.3	965	1769.0
518.9	966	1770.8
519.4	967	1772.6
520.0	968	1774.4
520.6	969	1776.2

${ }^{\circ} \mathrm{C}$		6
521.1	970.	1778.0
521.7	971	1779.8
522.2	972	1781.6
522.8	973	1783.4
523.3	974	1785.2
523.9	975	1787.0
524.4	976	1788.8
525.0	977	1790.5
525.6	978	1792.4
526.1	979	1794.2
526.7	980	1796.0
527.2	981	1797.8
527.8	982	1799.6
528.3	983	1801.4
528.9	984	1803.2
529.4	985	1805.0
530.0	986	1806.8
530.6	987	1808.6
531.1	988	1810.4
531.7	989	1812.2
532.2	990	1824.0
532.8	991	1815.8
533.3	992	1817.6
533.9	993	1819.4
534.4	994	1821.2
535.0	995	1823.0
535.6	996	1824.8
536.1	997	1826.6
536.7	998	! 828.4
537.2	999	1830.2
537.8	1000	1832.0
538.4	1001	1833.8
538.9	1002	1835.6
539.5	1003	1837.4
540.0	1004	1839.2
540.6	1005	1847.0
54.2	1006	2842.8
54.7	1007	1844.6
542.3	1008	1846.4
542.8	1009	1848.2
543.4	1010	1850.0
543.9	1011	1851.8
54.4	1012	1853.6
545.0	1023	1855.4
545.6	1014	1857.2
346.2	1015	1859.0
546.7	1016	1860.8
547.3	1027	1862.6
547.8	1018	18640.4
548.4	1019	2866.2
548.9	1020	1868.0
549.5	102	1869.8
550.0	1022	2871.6

CENTICRADE - FAHREMEIT

CONVERSION TABLE

${ }^{\circ} \mathrm{C}$		${ }^{6}$	C		\%
550.6	1023	1873.4	572.3	1062	1943.6
551.2	1024	1875.2	572.8	1063	1945.4
551.7	1025	1877.0	573.4	1064	1947.2
552.3	1026	1878.8	573.9	1065	1949.0
552.8	1027	1880.6	574.5	1066	1950.8
553.4	1028	1882.4	575.0	1067	1952.6
553.9	1029	1884.2	575.6	1068	1954.4
554.5	1030	1886.0	576.2	1069	1956.2
555.0	1031	1887.8	576.1	1070	1958.0
555.6	1032	1889.6	577.3	1071	1959.8
556.2	1033	1891.4	577.8	1072	1961.6
556.7	1034	1893.2	578.4	1073	1963.4
557.3	1035	1895.0	578.9	1074	1965.2
557.8	1036	1896.8	579.5	1075	1967.0
558.4	1037	1898.6	580.0	1076	1968.8
558.9	1038	1900.4	580.6	1077	1970.6
559.5	1039	1902.2	581.2	1078	1972.4
560.0	1040	1904.0	581.7	1079	1974.2
560.6	1047	1905.8	582.3	1080	1976.0
501.2	1042	1907.6	532.8	1081	1977.8
561.7	1043	1909.4	583.4	1082	1979.6
562.3	1044	1911.2	583.9	1082	1981.4
562.8	1045	1913.0	584.5	1084	1983.2
563.4	1046	1914.8	585.0	1084	1985.0
563.9	1047	1916.6	585.6	1086	1986.8
564.5	1048	1918.4	586.2	1087	1988.6
565.0	1049	1920.2	586.7	1088	1990.4
565.6	1050	1922.0	587.3	1089	1992.2
566.2	105	1923.8	587.8	109 C	1994.0
566.7	1052	1925.6	588.4	1091	1995.8
567.3	1053	1927.4	588.9	1092	1997.6
567.8	1054	1929.?	589.5	1093	1999.4
568.4	1055	1931.0	590.0	1094	2001.2
568.9	1056	1932.8	590.6	1095	2003.0
569.5	1057	1934.6	591.2	1096	2004. 8
570.0	1058	1936.4	591.7	1097	2006.6
570.6	1059	1938.2	592.3	1098	2008.4
571.2	1060	1940.0	592.8	1099	2010.2
571.7	1061	1941.8	593.4	1100	2012.0

TABLE 9.7

CHAPTER TWO

reciprocating engine performanci:

SECTION 2.1

Horsopower Determination for Test Conditions

In aircraft performance testing, engine performance is the evaluation of the engine as installed in the aircraft. Since aircraft induction and exhaust systems affect operation, engine manufacturers tests will not indicate the exact installed performance. Tests must be run to determine power available, critical altitude, fuel consumption, and cooling data at standard day operating temperatures. These values not only determine overall airnlane performance when applied to the aerodynamic characteristics of the airframe, but also show the quality of the engine installation when compared to the performance of the isolated engine.

Considering the propelier driven aircraft, power is the first characteristic to be studied. The total useful power produced is of primary interest. This is the power with which the aircraft manufacturer can work. It may all be used to drive the propedler or part may be extracted to drive auxiliary equipment. In making guarantees, the total useful power is specified, and the assumption is made that the manufacturer may use it as he wishes. If it is used to run cooling fans, less power will be delivered to the propeller, but less cooling drag may be achieved; if it is used for cabin pressurization or electric generators, weight is saved by the elimination of auxiliary motors. As a result, in performance testing, total power available is considered to be a more useful criteria than the thrust power commonly used by aerodynamicists.

In all propeller engine combinations pewer is best determined by use of a torquemeter attached to the shaft to neasure useful torque nutput. The horsepower is given by the equation:

$$
\text { BHT }_{t}=\text { Torqueneter roading } \times K \times N_{i c}
$$

where:

$$
\begin{aligned}
\text { K } & =\text { a constant determined by dynamometer tests } \\
N_{i c} & =\text { ongine rpm corrected for instrument error } \\
B H P_{t} & =\text { brake horsepower on the test day }
\end{aligned}
$$

When torquemeters are not available power charts are used. These charts solve for brake horsepower when manifold pressure, rpm, carburetor air temperature, and prossure altitude are known. They are made partly from dynamometer tests and partly from theory. They presume that all additional factors effecting pewer, such as oil pressure, oil temperature, and cylinder head temperature, remain constant or vary in a predetermined manner. They also assume that the fuel-air mixture is exactly as specified and ignition is perfect. These assumptions are not valid in all installations or operations; so the charts are not exact. They do, however, represent a reasonable approximation in the absence of a better measuring systom.

A tjpical chart consista of three parta, a ses lovel powor graph, an altiturie correction graph, and a chart carburotor air temperature graph. To determine the horespower dellvered at any given manifold pressure, rpm, altitude, and carburetor air temperature the following procedure is used on a typioal power chart as shown on Figure 2.11.
(a) Find the point corresponding to the given manifold pressure and rgm on the altitude correction graph, (Point A).
(b) Find the pover whioh would be delivered if the engine were operating at asa level with the given rpm and M.P., (Point B).
(c) Transpose Point B to the zero altitude axis of the altitude oorreotion graph, (Point C).
(d) Conneot Point A and Point C by a otraight line. This lino vill represent the variation in powar with altitude at the given manifold pressure, rpm, and chart carburetor air temperature.
(e) Find the horsepover (Point D) at the interseotion of the given preasure altitude axis and the line AC. This horsopower is called chart horsopower; it is the horsepower whioh would be delivered at the given manifold preseure, rpm, preseure altitude, and chart carburetor air tempernture.
(f) Correct ohart horsepover to teat horsepover by the ompirioal equation:

$$
\begin{equation*}
\mathrm{BHP}_{t}=\mathrm{BHP}_{\mathrm{C}}\left(\frac{\mathrm{~N}_{\mathrm{sc}}}{\Gamma_{\mathrm{Ct}}}\right)^{n} \tag{2.108}
\end{equation*}
$$

wbere:

$$
\begin{aligned}
& \mathrm{BHP}_{\mathrm{t}} \text { - test brake horsopower } \\
& \mathrm{BHP}_{\mathrm{c}}=\text { chart brake horsopover } \\
& T_{\infty} \text { - chart carburetor air temperature for the pressure altitude. } \\
& \text { This is generally the standard temperature for the specified } \\
& \text { altitude, as the manufacturer teste the ongine with no cowl } \\
& \text { or duoting. } \\
& T_{c t}=\text { teat carburetor air temperature } \\
& \mathrm{n}=\text { exponent eppecified by powor ourve, usually (0.5) }
\end{aligned}
$$

If the exponant is (0.5), the ohart horseporer oorreotion may be given as a 1% decrease for each $6^{\circ} \mathrm{C}$ the test earburetor temperature exceede the chart carburetor air temperature when the temperatures are near $300^{\circ} \mathrm{K}$. Manifold minture temperature is often used in piace of carburotor air temperature, as it alao is - meagure of the temperature of the charge ontering the ollnder. If thie temperature is ueed instead of carburetor air temperature, the exponent may ohange but will still be apecified by the pover curve. For example, using Figure 2.11, find the test paror of an R 2000-11 engine at $30^{\prime \prime}$ manifold preseure 2000 rpm , at 18,000 foet, carburetor air temperature $-10^{\circ} \mathrm{C}$.

Chart Horsepower $=728$
Carb alr chart $=253^{\circ} \mathrm{K}$
Carb alr teat $=263^{\circ} \mathrm{K}$
Toot horsepowor $=728 \times \sqrt{\frac{253}{263}}=716$

In addition to determining power delivered under teat conditions, power delivered on a etandard day at cortain arbitrary sottinge auch at oruise power, maximum continuous power, and military powor are required. To determine these powers, the aircraft is flown as near 88 pousible to the desired aetting on a teat day, and the pover obtalned 10 oorrected to the power whioh would be obtained on a etandard day at the same pressure altitude. Most porer corrections may be realved into three oasea: if the roquired aotting, manifold presoure and rpm does not require full throttle; if the setting does require full throttle; if the setting requires full throttlo but manifold pressure way be increased or decreased by a turboauperoharger.

Pratt \& Wintueg B-2500-11

 radman Posmer,Bigh Tinpeller Gear fiatio,
Prop. Gear Ratio. 0.500 .5: 'ch'ger Gear Ratio....... High... 9.58:1 Auel Motering P012r7-19
fual crada. 100/130
Correot IP in aocordanoe wh Pree alr Tap. by applying the followiag:
(A) Add 18 for ach $6^{\circ} \mathrm{C}$ dacreace from T_{8}
(B) Subtract 18 for each $6 \rho \mathrm{C}$ increses from T_{f}. ($\mathrm{I}_{\mathrm{g}}=$ otd. alt. teap. $)$

1000020000 FBESSURS ALTTTUDE IN FBET

Power Correction for memperature Variation at Conotant Mapifold Prefsure

This case is used for such problems as determining the cruising power of any engine or the military power of a supercharged engine at altitudea where wide open throttle would exceed the manufacturer's operating ilmits. In this case the esoumption is made that, if the airplane were flom on atandard day, the throttle position would br slightiy different from its position on a tont day but manifold pressure vould be constant.

With manifold pressure and pressure altitude the same on the teat day and the etandard dey, the change in carburetor air temperature will be the only variable effecting power, and the correction cen be made by the name relation used in obtaining test horeepower from ohart horsepower. Teate have ehown that carburetor air temperature will ohange from teat day to otandard day by exaotly the same amount as free alr temperature changes from test day to standard day. Bquation 2.201 is usod in this case.

$$
\begin{equation*}
B H P_{\theta}=B H P_{t}\left(\frac{T_{C t}}{T_{C \theta}}\right)^{n} \tag{2.201}
\end{equation*}
$$

where:

BHP ${ }_{8}$ - etandard day brake horsepower
$T_{c 8}-\left(T_{a g}-T_{a t}+T_{0 t}\right)$ standard day oarburetor air temperature
$T_{a \theta}=$ etandard ambient temperature
$T_{a t}=$ test ambient temperature
$n=$ exponent from power ohart, usually (0.5)
the following table is an oxample of teat and standard day oondition.

THS DAY
Preasure Alt 18,000'

T_{g}	$-10^{\circ} \mathrm{C}$
NP	$30^{\circ \prime} \mathrm{Hg}$
Ypm	2000
CAT	$0^{\circ} \mathrm{C}$
$\mathrm{BBP}_{\mathrm{t}}$	703

Throttlo partly open

STANDARD DAY
Preseure Alt 18,000
$\begin{array}{ll}\mathrm{T}_{8} & -20^{\circ} \mathrm{C} \\ \mathrm{MP} & 30^{\prime \prime} \mathrm{Hg}\end{array}$
rpm 2000
CAT $\quad-10^{\circ} \mathrm{C}$
$\mathrm{BHP}_{8} 716$
Throttle olightis retarded fram test day poaition

Another form of equation 2.201 1s sometimes used. $\triangle B B P$ (for $\triangle C A T)=E H P_{t}\left[\left(\frac{T_{0 t}}{T_{0 \Delta}}\right)^{n}-1\right]$
whore:
$\triangle B B P$ (for $\triangle C A T$) (BRP: BHP $_{t}$), brake horseporsr correotion for carburetor air tomperature ohange

SETITIDN 2.3

Power Currection for Monilcid presoure Variation
 Requlting f:on Tomporeture Va-jation and
 Flight Hach Niwnor Variation

This case 18 uged for problems ouch as maximum prow or cruising power above the critical aititude jor the desirga powor sotting, In this case the throttle will be full open in an eftort to obtain the desiras manfocid prensirw and rpm; therefore, if the alrplare were flown on a standard day the throttle vould remain apen and mailfoid pressure as well as carbiaretor air tomperature would change due to the change in free alr temperature. The correctica for the two offecte mas be gtated ir this form:

$$
\begin{equation*}
\mathrm{BHP}_{\mathrm{g}}-\mathrm{BHP}_{\mathrm{t}}+\Delta \mathrm{BHP}(\text { inr } \triangle C A T)+\Delta B H P(\text { for } \triangle M P) \tag{2.301}
\end{equation*}
$$

The first correcticn tern la obtaized pros the oarburetor temperation relation as used in equation 2.202 . The manifold pressuse comection reanires oonelderation of two effecte: the shanze in pressure ratic of the euperchargor due to change in inlet temperatura and the change in afr inlet ram prosoure ratio tecauge of ang change in Mech number of tho alrcraft caused by fover changes.

The following table te an oxainple of test and standard day conditions for the case where a tirbosupercharger is not involved and manifold preseure and Mach number vary from test to etandard day.

TEST DAY
Test power eetting $30^{\prime \prime}$ MP Pressure altitude 20,000 rpm

T_{a}	$-14^{\circ} \mathrm{C}$
MP	27 "H8
CAT	$-4^{\circ} \mathrm{C}$
BHP	630
Throttle wide	

STAMDARD DAY Preseure altitude $20,00 c$ rpm
T
M
B
CAT
BHP ${ }_{8}$
Throttle wiade open

TEPMPERATURE EFFFECTS ON MANIFOLD PRESSURE

The exact correotion of manifold preseure for change in free air temperature would result in work a ad instrumentation beyond the ocope of flight test, because of the varied thermodymamic prooesese involvod in induotion and carburetion. An approximate mothod has been devieed and ia presented in fiight Test Coction Memorandum Report TSCEP5E-2T, 6/29/45, "A Bimplified Manifold Proogure Correction." The basic equation used in this method 1s:

$$
\begin{equation*}
M P_{\mathrm{B}}=\left(M \mathrm{P}_{\mathrm{t}}\right)(1+\mathrm{CAT}) \tag{2.302}
\end{equation*}
$$

where:
M_{a} a manifold pressure 6 terdard "표
($\mathrm{MP}_{\mathrm{t}}^{\mathrm{a}}$) - manifold preseure test "HB
$\Delta t=\left(T_{a t}-T_{a B}\right)$ different between teat day carburetor air tompera-
ture and etandard day carburetor air temperaturo ($T_{o t}-T_{0 g}$)
C a a constant depending upon the type process emplojed

The correction conetant C is dopendent on the preseure ratio of the prooede, the initial temperature of the procesa, and whothor fuel ia vaporized during the process. CRARTS 2.31 and 2.32 at the ond of this ohapter have been made frcim equation $2.30 e$ for the value of C in the normal vorking range. It ahould be noted that, if the ratio of test manifold preseure to ambient preseure is inge than 1.5 , this oorreotion is nogligible for temperature variationg of $5^{\circ} \mathrm{C}$ or leqs.

By use of the two graphs, any ocmbination of induction processes for air only or a fuel ali mirture may be ovaluated. Manifold pressure data roduotion methode for typioal induotion eystems are inoluded at the end of tinie section. It should be noticed that, ance the manifoid pressure oorrections have beon estatilehed foi a typioal ongine ingtallation, thes oan be used for all othor duplioate ingtallationg by lese of a emall ohart showing the oorreotions at various altitudes for various manifold preasure rpa ocmbinations.

MACE RUNBER THFHECTS OD MANIFOLD FRESSURE

The determination of the atandard day manifold preseure oan be obtained by miltiplying the temperature oorreoted manifold preeswre by the ratio of the etandard and teat day ram prosemre ratios. Tho average oarburotor inlot has a ram effioionoy of about (0.70 to 0.75) . Jaing CRART 2.33 at the ond of this ohapter, rith elight Maoh numbor and ram offioionoy, tho ratio P_{t} / P_{a} may be determinod. Obtaining this ratio for both tost and gtandard Mach number, and sacuming the toet day presevre altitude is hold,

$$
\frac{P_{t g} / P_{Q}}{P_{t t} / P_{a}}=\frac{P_{t g}}{P_{t t}}=\frac{M P_{t}}{M P_{\Delta t}}
$$

and

$$
\begin{equation*}
\mathbf{M P}_{\boldsymbol{\theta}} \oplus \mathbf{M P}_{\Delta t} \times \frac{P_{t \rho}}{P_{t t}} \tag{2.303}
\end{equation*}
$$

where:

$P_{t} \Delta t$ etanderd total inlet pre日eure at otandard 111ght Magh number
$P_{t t}=$ test total inlet presesuro at test Maoh number

This correotion muat be made by euocessive approximations because atandard ipeed cannot be exactly determined from the polar until power le know. The jorrection is not normalis made unless the airplane Maob number is above .6 and in overall change in apoed becauge of ohange in pover is ovor 3 bnots.

PONER CORRECTION FOR MANIFOLD FRRESIRRE VARIATION

Having determinod otandard day manifold proseare, ite offoct on powor mant bo ovaluated. For rough vork the change in pover is directis proportional to the change in manifold presaure.

$$
\begin{equation*}
\mathrm{BAP}_{\mathrm{G}}=\mathrm{BAP}_{\mathrm{t}} \frac{\mathrm{MP}_{g}}{\mathrm{NP}_{\mathrm{t}}} \tag{2.304}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta \mathrm{RBP}(\text { for } \Delta M P)=\operatorname{BHP}_{t}\left(\frac{M P_{g}}{M_{t}}-1\right) \tag{2.305}
\end{equation*}
$$

where:
$M P_{s}=$ temperature and wach numbor ocrreoted manifold presucuce MP' - tost manifold pressure

Botter acouracy oan be obtained by making plote of BHIt VA_{L} MP at varicus altitudes and rptas in order to ind the rate of ohange of forer with IP as ohown in Figure 2.31. With the slopes from auch a plot \triangle Bip may be oaloulated. In the presoure altitude mothod of data reduction this oorreotion in not required - seo soction 4.4 - sinoe only test BiP is plotted; in this case oquation 2.304 may bo used to approximate atandare day MP for the etandard lay BHP dotermined from the preseure altitude plot.)

$$
\begin{equation*}
\Delta B H P(\text { for } \Delta M P)=\Delta M P_{t} \times \frac{d(B H P)}{d(M P)} \tag{2.306}
\end{equation*}
$$

With the temperature oorreotions of SAotion 2.2 and the atandard manifold presemre an equation for otandard day power may be written:

$$
\begin{equation*}
\mathrm{BHP}_{\mathrm{B}}=\mathrm{BHP}_{\mathrm{t}}\left[\left(\frac{\mathrm{~T}_{\mathrm{ot}}}{\mathrm{~T}_{\mathrm{Os}}}\right)^{\mathrm{n}}+\mathrm{NP}_{\mathrm{B}} \quad-1\right] \tag{2.307}
\end{equation*}
$$

or

$$
\begin{equation*}
B A P_{s}=B B P_{t}\left(\frac{T_{O t}}{T_{O S}}\right)^{D}+\Delta M P \frac{d(B B P)}{d(K P)} \tag{2.308}
\end{equation*}
$$

The final etandard day power ourvee are presented in a form olmiler to that shown in Figure 2.32.

Fhgure 2.31
Power Variation for Mantfold Pressure Variation at Constant RPM and Altitude (Test Data)

Figare 2.32
Standard Day Engine Data (Internal
Gear Drive Supercharger)

Example 1

Normal inotallations where the inlet temperature 14 measured before the fuel 18 added at the carburetor and before the charee is compresed.
(1) Teat point number
(2) H_{c}, pressure altitude
(3) P_{s}, inlet (atmospheric) pressure corresponding to (2)
(4) $t_{a t}$, test atmonpheric temperature
(5) $t_{a \theta}$, standard atmospheric temperature
(6) Δt, (4) - (5)
(7) $t_{\text {ot }}$, teet carburetor inlet temperature
(8) MP_{t}, test, instrument-corrected manifold prosoure
(9) $\quad P_{2} / P_{1}$, manifold preseure ratio, (8) \div (3)
(10) C, from CEART 2.32 and (7) and (9)
(11) $\triangle M P$, manifold pressure correotion (10) $\times(8) \times(6)$
(12) MP_{g}, standard manifold pressure, (8) $+(11)$

Example II
Fuel injection engine or any oupercharger where air only is ompreseed; aleo for fuel air mixtures when the inlet temperature is measured after the fuel is vaporized.

NOTE: For this case the data reduotion is identical to that for Romple 1 , except that (4) is substituted for (7) and CEART 2.31 is used to determine C.

Example III

For installations where part of the induction pressure ris. is with air only, and the remaining part is with a fuel air mixture. (Turbosuperoharger inotallations and auxiliary blower inatallations when operating at oonstant RPM.)
(1) Test point number
(2) H_{o}, true pressure altitude
(3) P_{a}, atmospheric pressure corresponding to (2)
(4) $t_{\text {at }}$, test atmospherio temperature
(5) t_{88}, etandard atmospheric temperature oorreoponding to (2)
(6) Δt, (4) - (5)
(7) $t_{\text {ot }}$, oarburetor air temperature before fuel ia added
(8) P_{d}, test carburetor deok preseure
(9) MP_{t}, teat, instrument-oorrected manifold preseure, air only utage
(10) $\left(P_{2} / P_{1}\right)_{B}$, carburetor-deok-ambient preseure ratio, (8) $+(3)$
(11) C, from CHART 2.31 and (10) and (4)
(12) $\Delta M P_{a}$, ranlfold presoure correction for alr only stage (11) $\times(9) \times(6)$

Fuel Air Stage
(13) $\quad\left(\mathrm{F}_{2} / \mathrm{P}_{1}\right)_{\mathrm{P}}$, manifold pressure - dock pressure ratio (9) $+(8)$
(14) C, from CEART 2.32 and (13) and (7) for fuel air mirture $[(9)+(12)] x$ (14) $\times(6)$
(16) $M P_{B}$, etandard manifold preseure (9) + (12) + (15)

Powor Corroction for Turboguparoharger RPM and Back Prosaure Variation at Congtant Manifold Prosgure

This pover correction is ueed when the throttie is wide open but manifold preseure can be varied by changing turbosuperoharger apeed. This means that, In going from a test day to a gtandard day, manifold proseure and rpa will be constant vhile carburetor air temperature and turbo rpm will change giving a change in power. An omample of tost and standard day raadinge for otuch conditione is prosented in the folloving table:

TEST DAY

Preasure Altitude	20,000
T ${ }_{\text {t }}$	$-14^{\circ} \mathrm{C}$
$\mathrm{Mr}_{\mathbf{t}}$	42 "E8
rpa	2250
tot	$27^{\circ} \mathrm{C}$
teet turbo rpm	7200
B 81	2100
HRP $_{t}$	28

STAIIDARD DAY
Prosoure Altitude

$\mathrm{T}_{\mathrm{g} 8}$	$-24^{\circ} \mathrm{C}$
He^{8}	42 "Bh
rpm	2250
${ }^{1}$	$15^{\circ} \mathrm{C}$
otf turbo rpm	7000
BHP	2150
ESP_{8}	27

The factore affooting porer in this oace are three: the ohango in oarburetor telperature beoause of ohange of free air terperature; the ohange of oarburetor alx temperature beoanee of ohange in turbo apeed; and the ohange in oxhaugt back preasure. The equation for standard horeeporer under these oonaition 1e:

BAP - BRP $H_{t}+\triangle B B P$ (for $\triangle C A T$) $+\triangle B A P$ (for $\triangle B P$)
where:

The oorreotions in this oquaticn are uavily made ompirically. Firgt the anampition are made that the turbo doen not ohange opeed and that a ohange in manfuld prenewre woild roevit from inlet tomperature variation in going from - tert day to a standard day. On this basin a otandard daj manifold proanmo 1a ocmputod as desoribed in 8eotion 2.3. This manifold preseure correotion is defined ag,

$$
\Delta M P=\left(N P_{t}-X P_{a}\right) a t \text { teat turbo rpa }
$$

Thie ANP regrecente the ohange in manifold preacure whioh wort be made by a ohange in twrbo rye. To ortablith thie ohange in twobo rpm and ins other inlated faotore, plote of performanoe data are zade an bom in Figur 2.4. Treen owree, slthongh not ocrreoted, vill bhow olowely the intorminted offeot of obanging nay on of the variablem. By ontering muln a geligh at the

 valuen for twrbo rye and eshaurt bact preacture can then be fixed by direot reading on the greph or by applying the imorempnte for the A Mp veluan to the tert valuen.

The total ohange in carburetor air temperature in the aum of the ohange because of change in free air tomparature and obange in turbo rpm.

$$
\left.\Delta C A T=T_{a g}-T_{a t}+\Delta T \text { (for } \Delta t u r b o r p n\right)
$$

The power change because of carburetor alr temperature variation 1s the sam ad that discussed in Seotion 2.2. The ohange in pover because of change in exhaust baok preseure has been empirically established as 1% increase in power for each 2 "Hg decrease. With this the atandard day porer equation 1s,

$$
\begin{equation*}
\mathrm{BHP}_{\mathrm{s}}=\mathrm{BHP}_{\mathrm{t}}\left[\left(\frac{T_{\mathrm{Ct}}}{T_{\mathrm{CO}}}\right)^{\mathrm{n}}+.005\left(\mathrm{EBP}_{\mathrm{t}}-\mathrm{EBP}_{\mathrm{s}}\right)\right] \tag{2.4ळ}
\end{equation*}
$$

POWER SETTING FRRORS II FLICHTT

In addition to the oorrection of powor for temperature ohange. It mast sometimes be corrected for errors caused by test day manifold pressure or rpm not being set according to sobodule. Thia resulte fron instrument orror or buman error of the pilot. Rpmerrors must be minimiced by caroful adjustmente and anticipation of instrument error, because correction for its variation is not practical. Manifold pressure errore are more easily oorreoted. Unablly the correction is made at the aamo time that pover in oorrected for temparature. For a case in which throttle is wide open no oorrection is required. For a gear supercharged or unsupercharged ongino at part throttle, corrootion is made by manifold pressure-pover rolationships an described in seotion 2.3. For a turbo supercharged engina, correction is made as part of the tomparature correction. For example:

Desired MP	60"
Actual Plom MP	$59^{\prime \prime}$
Rise in MP to standard	$2^{\prime \prime}$
day oamputed with as"	
sumed constant turbo	
opeed	
MP obtained fram teet	$61^{\prime \prime}$
MP and aseumed rise	
Reduction in MP to be	$-2^{\prime \prime}$
acoomplished by re-	
ducing turbo	

Ficure 2.41
Fot for Doterndining Effect of innifola prepsure on
suto Rix, Finmet Beak Freserure, and Carburotor Iomperature.

For Doternining Standard Turbo RPM and Baot Proanure
and CAT for Cocrecting BidP for Change in
Turbo RFM and Beok Prouaure
 etope of Frample III Data Reduotion Outilpe 2.31.
$\left(\begin{array}{l}17) \\ (18)\end{array} \quad\right.$ Indicasuned for Δt_{a}
(18) Indicated tmrbo rpa
(19) Teat turbo rpar. (18) + Inatruent ocrreotion
(20) $E P_{1}$, indioated exhavet beok preasure
(21) IBP t, teat orhangt baok proceure (20) + ingtrument ocrreotion
(22) BHPtot, teat BBP at tect carburetor torparatme
 data plot aimilar to that of Figur 2.41.
$\left(\begin{array}{ll}(24) & \triangle \text { turbo RPM, Inc agaweod } \\ (25) & \triangle E B P, ~ f o r ~ a n c u e d ~ \\ 2\end{array}\right)$
(26) Turbo RPA (rtandard day) (19) + (24)
(27) EBP (otandand day) (21) + (25)
(28) $t_{0 p}$ tandand day carburotor temparetwo (7) - (6) + (23)
(20) BiPf, otandand day BRP, $(22)=\sqrt{(7)}(28)+(22) \times(25)=(.005)$

critioal altitude

Critical altitude is that altitnde where ongine performanoe beging to drop beoaues if the lowered atmonpherio preasure. It if definod in two different waje: (1) the altitude at which a apooifio manifold pressure can no longer be maintainod; (2) the altitude at which a epeoifio horeoporer oan no longer be mintainod. In flight test the firat definition is genoraliy used, because when an ongine is instaliod in an alroraft, the operating linite ouch as oruising pover, maximum continuous pover, and military porer are given in terms of manifold preasure and rpm rather than horsepover.

When a ocmplete pover available aurvey is made, oritical altituce can be selooted fram the graph of manifold preseure ve altitude. When only oritical altitude 1a desired, it can be eetimated by the pilot; then eoveral full throttle points are flow definitely above oritioal aititude and are oorreoted to etmadard day manifold preseure. Bince the drop in manifold pressure is direotly proportional to altitude, the point where the line of otandard day full throttle manifold pressure intoreoote the dealred manifold pressare ordinat: is the oritioal altitude, se show in Figure 2.51.

Notioc phould be taken that the oritioal altitude of an airplane in dependent on speed beoause of the ran presore offeot. Critioni aititude is umalls taken in level otabilired flient, but it in gomotimen noeded at ollmbing apoede.

F1gur 2.51
Doternination of Critioal Altitude

SECTION 2.6

Engine Data Plotting, Prop Load, BMEP
Data, Supercharger Operation

Suificient power required data must be obtained so that power required curves covering the full gpeed range of the airplane may be plotted for at leagt two altitudes which are considered the most typical cruising altitudea for the teot alrplano. Each power required curve includes one point at each of the rated power settinge of the engines ouch as war emergency, military, normal rated and maximum cruising powers. The throttles are wide open if the desired manifold preseure cannot be obtained. Sufficient pointe in the cruiaing power range are obtained (with the mixture in automatic lean) tc complate the epeod range with the lowest point at approximately the beat cilmbing epeod of the airplane. Cruiaing power pointe are obtained at rpm and manifold preseure combinations eelected so that the engines are operating between a proyeller load curve and the maximum allowable bmop. At some point near the power required for maximum range crulsing, three points are run at the same pover with one point at the rpm which lies on the propeller load ourve, another point at the maximum allowable bmep and the third at some intermediate rpm.

Additional power required data 1 s obtained $s 0$ that power required ourves may be draw at various altitudes; the lowest is obtained at aea lovel or the minimum practical altitude at the time of the teat and the higheat is obtainod at the highest altitude reached in the check climbe. One high opeed part of a power required curve is obtained at approximatoly each critical altitude. Other high power points are taken so that the maximum altitude inorement between the high epeod power required curves will not be more than a fow thousand feet for all teste above the critical altitude of the airplane. The hich epeed porer required curves consist of at least one point at each of the rated power settinge auch as war emergency, military, and normal rated for the high and low altitude power required curve and for the power curve noar the critical altitude. Other power required curves may be dram through single pointa using the more complete curves on either side of it as a guide in determining the proper elope of the curve drawn through the point.

At the critical altituje of the airplane, at least four pointa are run at the rated rpm of the engines with the firgt point at the rated manifold prosaure and with each oucceeding point at about two inches of mercury lese manifold presaure. If the elope of the curve through these pointa does not fit in with the other curves, it is an indication of power curve inaceuracy or rapid change in propeller efficiency. In either case it is necessary to run at least three poinviv at eaoh rpm for all of the power calibrations. From these additional pointe, the proper elope of the power required ourve mas be obtaincd.

A plot of all epead power data run at or corrected to the eame take-off eroses voight leas the weight of fuel used to climb to the test altitude is plotted on one Power vo Speed chart as enown in Figure 2.61. Bach pover required or partial power required curve is clearly labeled to show the oorreaponding density altitixds and grose weight.

Figure 2.61
Power Reouired Curves
All power required data at rated manifold presesure or at wide open throttle is correoted to give the power available on a standard day at the rated manifold preseure or at wide open throttle so that curves of BHP availabls and the correspoiading manifold pressure may be plotted againat altitude as shown in Figure 2.62. Curves of Speed ve Altitude for the de日ired power ratinge are drawn as show using points obteined from the power required ourves in Figure 2.61. These points are read at the speeds corresponding to the power available at the altitude of the power required ourve. The speods for best olimb and the celling of the airplane will be of ald in deteraining the shape of the upper part of the speed curve.

For each grose weight and altitude condition, a power required ourve is obtained with the ilrat point at rated power (autorioh), the second at maximum cruiging (auto rich and auto lean), with the reat of the points part of a complete survey of the cruleing power range made between the propeller load curve and the surve for limiting bmep as ahown in Figure 2.63. The higher cruiging
powers are run for both automatic rich and automatic lean mixiure oettinge but only automatic lean mixture setting need be used for the lower powers. Select four or five rpm valueo covering the cruising range. At wach rpm, eolect manifold pressure values varying from the maximum for limitine brep to the minimum corresponding to the power from a propeller laad curve or to the minimum manifold pressure at which level flight can be maintained for the given rpm. At leagt three manifold presouro increments should be used for each rpm and the increments should not be greater than three inches of mercury.

The propeller land curve 10 drawn through the rated power and ratod x pm point and determined by the following expression:

where:
$N_{R}=$ rated rpm (normal)
bhp $_{R}=$ rated horsepower (normal)

The limiting cruising bmep is apeoified by the engine maulafaturer and is usually about 140 brop for larger engines. The bmep is determined from the following expression for any given engine rpan and bhp:

$$
\begin{equation*}
\text { bmep }=\frac{\text { bhp } \times 792000}{\text { rpm } \times \text { p1ston displacoment }} \tag{2.508}
\end{equation*}
$$

The minimin zoomended orulaing rpm is detexmined by apeed limitations of the ongine or acceseorien and is apeoified by the engine manufaoturer; it will uavally be between 1200 and 1500 rpm. The minimm power for level flight is determined in fligbt.

In all orulaing operation the use of any but the lowest amount of superoharging should be avoided $1 f$ posaible. Alrplanes equipped with turbouperohargers should always be flow with the throttle butterfly wide open when using any turbo (except for what throttle is required for formation flying). Airplanes with gear driven euperoharger should alwaye be flown with the guperchargers in low apeed ratio up to the altitude at whioh the optimum indicatsd air apeed may be obtained without excoeding the allowable rpm and manifold prosaure for automatic loan mixture.

Figere 2.62
Luvel Fight Power Date

EBETION 2.7

Fuel Consumption

Priel conaumption is best masured ae porunde per brake horsopover hour, apecifio fum flow. From ougine thoory this in depondent upon moan effeotive pregeure in the ojlinfer. For a elmplo engine, vith all oonditione ideal, power ie a funotion of mean effeotive preseure, volume of the oylinder, and rpa go that for a given ongin epeoifio fuel connumption could be plotted againot brake hormopower and rpa, at sbow in Figure 2.72.

Figwe 2.71
Typioal Ipeoifio Fuel Consumption Curreo for RPM and Horsopover

In praotiot the epeoifio fual conoumption may also vary with altitude beoause of ourburetion, ouperohargery, ignition, and a000esorios. To run teats and make plots an in Figure 2.71 for many altitodes would be tedions and is not required for filigit tont. The ongine manfacturers and govermont agonoien fill run auch oxtengive tents and deternive porer mobedule of aisturen, manifold preserver, rym, and euperoharger ration for bent ongine operation. For flight teet the only fuel oonsumption data genersily requiped is that fur povere obteined by operation on the normal sohodulos an ohown in Figure 2.72. Thene pointe are run at the mam tim ad upeed power pointe eo that later air miles per gailon and xange oun be ocmprode.

Figure 2.72
Speoific Fuel Conoumption Data at Tyo Mixtare Settinge

As part of the general ongine performance presentation a graph of etandeed gallons per hour at correaponding eettings ve altitude is oometimo required from the specifio fuel flow information and is presented as shom in Figure 2.73.

Figure 2.73
Fuol Consumption at Various Altitudes
For Two Engine Conditions

SECTION 2.8

Engine Cooling

The hot etrength of motale, and the temperature 11 mlta impoeed by Iubrioants and dotonation make it neceasary to limit the operating temperature of ongines and accuseories. Army and Navy Aeronautical Specification, "Tegt Proceduree for Alrcraft Pcwor Plant Installation (AN-T-62)," has set up a etandardized instrumentation and teat procedure. This apeoification should be etudied when planning cooling tests.

There are two primary concerne in the cooling problom. These are whother the temperature ilmits can be maintained for all epecified engino operating conditions and the effect on range of the varioue ongino cooling configurations required to operate the ongines within preecribed limite.

For determining the cooling requirements of a fourengine airoreft one ongino is oompletely instrumented as opecified in (AN-T-62). The remainder have less extensive instrumentation whioh is used as a crose chook to oorrelate their operation with that of the completoly ingtrumented engine. All temperaturee except free air temporature and carburetor air temperature w111 be oorrected to Army ounmer daj oonditions whioh are $23^{\circ} \mathrm{C}$ higher than NACA standard tomperatures. The correction to aumer day conditior.a is made to the indicated ambient temperature oorrected for inetrument error. This is done by adding the product of the correction factor, given in (AN-T-62), and the difference between the ambient temperature and the Army ounmor day standard temperature. In recording airflow preesure data each preseure difference may be determinod in two waye; by direot measuroment, or by subtracting the two values which were measured with referenoe to the air epeed static proseure.

Temperatures and pressures thus determined allow omputation of the ongine cooling air flow which in turn makes possible a quantitative analyeis of the oooling data for uso in eliminating engine hot epote.

Figures 2.81, 2.82, and 2.83 aro typical examples of how the basic data is presented graphically for tho three cases usually oonaidered; ground operation, climb and level flight.

Cooling data may be oorrected to etandard temperaturea by oolving equation 2.801

$$
\begin{equation*}
\Delta T=K(B H P)^{x}(\Delta P)^{a}(\sigma)^{b}(B S F C)^{c} \tag{2,801}
\end{equation*}
$$

where:
$\Delta T=$ ongine temperature - ambient temperature
$K=$ conatant to be determined
BKP - brake horsepower
$\Delta P=$ pressure drop through baffles
$\sigma=$ density ratio
BSFC. brake epecific fuel coneumption
$x, a, b, 0$ - exponente to be determined

In solving for the exponent "c", level flight rans are made at atout 10,000 feet pressure altitude in normal and rich mixture setting to determine the effect of mixture on cyllnder head temperature. The rpm, bhp, air speed, cowl flap setings, oil cooler flap-settings, and altitude are held constant for both mixture settings. The data obtained at various rpms (1800, 2000, 2200, 2400, and 2550 rpui) from the 10,000 feet speed-power tests in normal and rich mixture are then used to determine the "c" exponent. A complete cylinder head temperature pattern is obtained on the Brown recorder on each run after the temperatures have become stabilized. The exponent "c" is the slope of the plot of log ΔT versus log BSFC. The sign of "c" may change abruptly between manual lean and hicher mixture settings.

A pressure survey is made at about 10,000 feet pressure aititude in normal mixture to determine the exponent "a" for the change in baffle pressure. This 1: accomplished by varying the cowl flap openings on the angine instrumented for cooling and holding the horsepower, rpa, air speed, oil cooler flape, and altitude constant. Runs are made with the cowl flaps set in increments of l-inch fron full open to the setting resulting in the limit engine temparatures being obtained. On the runs at each l-inch increments of cowl flap travel. the engine temperatures are stabilized and recorded on the frown recorder. The power on the engines not being tested is varied to hold a constant air speed for all cowl flap positions at each power setting on the test engine. The exponent "a" is the slope of the plot of log ΔT versus log ΔP.

An altitude survey is obtained in conjunction with the spead-power data at approximately $5000,10.000$ and 15.000 foot altitudes to determine the effect of aititude on engine cooling. The stabilized temperatures obtained during the speed-pover test in normal mixture at various rpmare then used to determine the exponent "b". The cowl flaps and oil cooler flaps are held conetant at a setting that will give adequate cooling for all altitudes. The exponent "b" is obtalned fram the slope of the plot of $\log \Delta T$ versus log σ. For determining "b" the same BHP's are used at each altitude.

In determining the exponent "x", the level flight data from other stabilized runs are used. Holding $\triangle P, \sigma$, and BSFC constant, the elope of a plot of $\log \Delta T$ versus log BHP gives the value of the exponent "x". Test values of $\Delta P, \sigma, B S F C, \Delta T$, and BHP are substituted in the basic equation and E determined. With this equation the engine cooling data can be corrected to a standard day temperature or to a hot day temperature; also, the amount of cowl flaps necessary for any engine power can be determined.

A more 8 mplified wethod of cooling analysis for rough work can be made by ploting ΔT for various engine components vi cowl flap eetting. $A \quad \Delta V_{i}$ is also plotted on the same graph for a cowl flap drag increase reference. A typical plot of this type is shown in Figure 2.84. Plots of this type made at two speeds and altitudes are useful in determicing the ΔT ranges for various cowl siap or oil cooler control positions.

B-000 USAF NO. 00000 GROUND CSOLING CHECK
UIXRREAR COW FLEES ON GAP INTERCOOLER O" GAP OIL COOLER 13.5" GAP
 TDIE (Minutes)
Flgure 2.81
Gromd Cooling Check

ATR 6979

Figure 2.83
Pover Calibration and Cooling Rum

A1-2 -6273
08N逪2.31

AFTR-6273
CBART 2.32
1.30
1.25

SYMBOLS USED IN CHAPTER THREE

Symbol	Meaning
A	Area
A_{C}	Inlet capture area
A_{r}	Ramp or compreseion eurface area
A_{3}	Area of ojector at primary nozzle exd
A_{w}	Projected ojector area
B	Mach number parameter, $1+\frac{Y-1}{2} M^{2}$
$C_{d_{2}}$	Additive drag coelficiont
$\mathrm{C}_{\mathrm{d}_{\mathrm{p}}}$	Cowl pressure drag coefficient
C_{f}	Skin friction coafficient, or nozele thruat coefficiont
d	Boundary layer diverter height, or duct diameter
ฮ	Hydraulic diameter
$\mathrm{D}_{\mathbf{a}}$	Additive drag
F_{0}	Ram drag
F_{g}	Grose thruat
Fint	Intrinaic thruet
F_{n}	Net thrust
$F_{\text {post }}$	Poat-oxdt thruat
$F_{\text {pro }}$	Pre-entry thrust
g	Acceleration of gravity
K_{B}	Loes coefficient in duct bend
1	Subaonic diffuser length
m	Masa flow
m_{1} / m_{0}	Inlet mase flow ratio $=\mathbf{A}_{0} / \mathbf{A}_{\mathbf{c}}$
M	Mach number
N	Engine rotational epeed
$P_{\text {a }}$	Atmospheric pressure
P_{0}	Static presaure
P_{t}	Total pressure

$\mathrm{P}_{\mathbf{w}}$	Ejector wall static pressure
9	Dymamic pressure, $1 / 2 \rho \mathrm{~V}^{2}$
F	Average radius of curvature for duct bend
R	Universal gas constant (96.031 feet $/{ }^{\circ} \mathrm{K}$)
$\mathbf{R}_{\text {c }}$	Reynold's number
T	Almonpheric temperature
T	Static temperature
T_{1}	Total temperature
V	Velocity
$V_{\text {b }}$	Secondary flow apeed
V_{t}	Alrplane true apeod
$w_{\text {a }}$	Engine airflow
${ }^{\mathbf{w}}$ BL	Airflow through boundary layor bleed eyatem
${ }^{W}$	Gas flow
${ }^{*}$	Secondary airflow
X	Nossle preseure ratio parameter $\left[\begin{array}{l}P_{i S} \\ P_{a}\end{array}\right] \frac{\frac{y-1}{Y}}{Y}-1$
*	Angle of attack
. P. $^{\text {\% }}$	Exponente used in dimenetonal analyale
$\boldsymbol{\gamma}$	Ratio of apecific heate
6	Boundary layer thickness or corrected pressure, $P_{a} / P_{\text {sL }}$
η	Ram officiency
θ	Corrected temperature
λ	Flow angle relative to free atream direction
π	Non-dimensional parameter
p	Ale density
${ }^{\circ} 1$	Cowl position parameter
\dagger	Momentum in boundary layor removal syatem,

Subacripte:

$0,1,2$, etc.
BL
-
SL
th

Superecripte:

*
 1

Engina station designations
Boundary layer
Exdt
Sea level
Throat

Sonde flow conditions
Conditione downetream of normal chock wave

SECTION i

INTRODUCTION TO THRUST MEASUREMENT

1.1 PRELDMINARY COMMENTS

The curbojet engine performe a function eimilar to that of the reciprocating engine with a propeller. With either eyatem thruet ie produced in the eame manner; that is, by accelerating 2 mase of alr. The difference in the operation of the two ayeterne liee in the volume and velocity of the air or gaece affected. The propeller moves a comparatively large volume of adr rearward at a relativaly low valocity, while the turbojet enfine takes in a smaller volume of adr, expands it with burning fuel, and expele it to the rear at a high velocity.

The atatic thrust of a turbojet engine can be detormined readily by direct mechantcal measurement on the ground. This measurement may be made with strain gagoe, apring balance, etc. ofther with the ongine installed in an airplace mounted on a theust atand or with the bare ongine located in a test cell. It hee been found that oven with coomingly identical production curbojet ongines, there to an appreciable difference in thruat output. Also, there is agradual loes of thrust se operating houre are accumulated on an ongine. For this resuon the otatic thruet of engines in adreraft undergoing performance teating should be moseured periodically.

Thruat measurement in fight becones comelderably more difficult than under atatic conditione. No satiafactory meane of determiniag thruet by mechandcel mease, euch an etrain geges ingtallad at the engtne mounte, has been found. Approxdmate thruat data can be obtained from the engine manufacturer'e etinated performance curver. Thie method is not eatiefuctory for flight tesf purpoees, howevar, These curvee are baied on estimates. or an average ongine and do not yleld oufficteatly accurate thruat data because of variations in output between englnee. A usoful application of these curvas in in making correctiong to otandard conditione te deacribed in Section 4. In thie
case a high degree of accuracy is not required since the amount of the corrections is usually small compared to the total values.
1.2 GENERAL ANALYSIS OF IN-FLIGHT THRUST MEASUREMENT

It ie convenient to consider first a ample ducted body in order to define the thrust developed by a turbojet engine. Fox simplification, the axis of the body is made parallel to the flight path and no mixing of internal and external flow downstream of the nozzle exit is considered (reference Figure 1.1). It ia indicated from the momentum theorem that the thrust developed is equal to the rate of change of total momentum (pressure plus momenturn flux) of the internal fluid contained within the stream tubes ahead of and behind the body as well as that within the body.

Figure 1.1
Flow Through a Simple Ducted Body

$$
3-2
$$

Asnuming a uniform velocity diatribution, the thruat at any arbitrary plane (P) perpendicular to the flight path can be expreseed as

$$
\int V \cos \lambda d m+\int\left(P_{e_{P}}-P_{\varepsilon}\right) d A_{P}
$$

where

v	$=$ fluid velocity
λ	= inclination of streamline to free-stream direction
m	= mane flow
$\mathrm{P}_{\mathbf{s p}_{p}}$	$=$ atatic pressure at arbitrary plane (P)
$\mathrm{Pa}_{\mathbf{a}}$	= ambiont pressure
$\mathbf{A}_{\mathbf{p}}$	= area containing the intornal flow at arbitrary plane (P)

1.3 DEVELOPMENT OF THRUST DEEINITIONS

1.3.1 Net Thruat:

The fundamental definition of the net thrust of a turbojet engine is coneidered equal to the change of total momentum of the internal fluid between atation 0 upatream and ataction W downatream. Station 0 is sufficiently far upstream that the boundariet of the preontry atream tube are parallel to the direction of undiaturbed flow and the atatic preseure in the stream tube is the aame as ambient presrure. Similarly, atation W io located downotream where preseure dinturbances reculting from the paesage of the body through the aly have dieappeared ahd the atatic pressure is again ambient. From continuity, $m=p$ VA and equation 1.1 may be re-stated as

$$
F_{n}=\int \rho_{w} v_{w}^{2} d A_{w}-\int \rho_{0} v_{0}^{2} d A_{0}
$$

F_{n} is the net thrust in the upstream direction created by the internal flow within the stream tubea extending both upstream and downstream of the body.
1.3.2 Intrinaic Thrust:

To define the thruet produced within the body, reference atations are taken at the entry (atation 1) and the exit (station 2). Consideration of the momentum theorem pemits equating the rate of change of momentum to the um of the pressure and friction forces acting on the sluid at the boundaries. Referencing preasures to ambient.

$$
\begin{align*}
& \int\left[\left(P_{s_{i n} t}-P_{2}\right) \sin \lambda-F \cos \lambda\right] d s=\int \rho_{2} V_{2}^{2} \cos ^{2} \lambda_{2} d A_{2}+\int\left(P_{2}-P_{a}\right) d A_{2} \\
& \left.\quad-\int \rho_{1} V\right)^{2} \cos \lambda_{1} d A_{1}-\int\left(P_{21}-P_{2}\right) d A_{1}
\end{align*}
$$

where

$$
\begin{aligned}
& \text { Peint }=\text { internal etatic pressure } \\
& \text { F } \quad=\text { local friction force per unit area } \\
& \text { de } \quad=\text { element of area of internal surface }
\end{aligned}
$$

The left-hand aide of the equation represente the force in the free-stream direction exerted on the fluid by the internal aurface of the duct. This force is equal to the rate of chasije of total momentum: appearing on the right-hand side of the equation wisich is equivalent to a force in the free-stream direction exerted by the fiuid on the internal - urface of the duct. This latter quantity is defined wo the intrinsic thrust.

$$
F_{\text {int }}=\int\left(\rho_{2} V_{2}^{2} \cos ^{2} \lambda_{2}+P_{22}-P_{a}\right) d A_{2}-\int\left(P_{1} V_{1}^{2} \cos ^{2} \lambda_{1}+P_{a_{1}}-P_{a}\right) d A_{1}
$$

1.3.3 Pre-Entry Thruat and Ram Drag:

A similar anslysis can be made of the pre-entry atream tube. To add phyaical meaning, the divarging portion of the atream tube can be considered as raplaced by a thin frictionlese membrane. Since the flow field to unchanged, the thrust will not be affected. With reference etatione 0 and 1, the force exerted by the fluid due to pressure acting on the intorior of the atroam tube becomes

$$
\int\left(P_{\theta_{\text {axt }}}-P_{a}\right) \sin \lambda d s
$$

which is commonly known ae additive drag.
whore

$$
\text { Pseaxt }^{=} \text {extoraal etatic pressure }
$$

As before thie force may be set equal to

$$
\int\left(\rho_{1} V_{1}^{2} \cos ^{2} \lambda_{1}+P_{s_{1}}-P_{2}\right) d A_{1}-\int \rho_{0} V_{0}^{2} d A_{0} \quad 1.6
$$

which is defined as pre-entry thrust. Since V_{0} is unfiorm, $m_{1}=$ $P_{0} V_{0} A_{0}$ and $\cos \lambda_{0}=1$, the pre-ontry thruat is

$$
F_{p r e}=\left(p_{1} V_{1}^{2} \cos ^{2} \lambda_{1}+P_{E_{1}}-P_{1}\right) d A_{1}-m_{1} V_{0} \quad 1.7
$$

The term mil V_{0} in the preceding equation is the ram drag, (Fe).

$$
F_{e}=m_{l} V_{0}
$$

Figure 1.2
Schematic Represeatation of Inlet Forcea on Normal Shock Inlat

1.3.4 Post-Exit Thrust:

Similarly, reference stations 2 and W may be chosen. and athrust derived which is defined as the poet-exit thrust.

$$
F_{p o s t}=\int p_{w} v_{w}^{2} d A_{w}-\int\left(p_{2} v_{2}^{2} \cos ^{2} \lambda_{2}+P_{2}-P_{2}\right) d A_{2}
$$

1.3.5 Standard Not Thrust:

Since aet thrust is defined considering flow betwenn etations 0 and W, the net thrust iv equal to the sum of the pre-entry thruet, intringic thrust and post-oxit thrust.

$$
F_{n}=F_{\text {pre }}+F_{\text {int }}+F_{\text {poat }} \quad 1.10
$$

While the fundamental definition of thruet has been baeed on the flow between atatione 0 and W. the calculation of post-exdt thrunt cannot be made prectaely becauee of mirding of internal and external flows downatream of the exdt. If the presaure aurrounding the post-exit atream tube is asumed equal to ambient, the post-exdt contribution to thrust becomes sero. This asaumption is made to deflne etaadard net thruat which te presented in engine apecifications by the engine manufacturera.

$$
F_{a_{\text {at'd }}}=F_{p 50}+F_{\text {lat }}=\int\left(\rho_{2} V_{2}^{2} \cos ^{2} \lambda_{2}+P_{s 2}-P_{\Omega}\right) d A_{2}-m_{1} V_{0} \quad 1.11
$$

Practical application of the definitions which have been derived in thic section te treated in detall to Section 6.

SECTION 2

TURBOJET ENGINE PERFORMANCE PARAMETERS

2.1 INTRODUCTION

The number of variables which affect the performance of a turbojet engine is quite large. Fortunately its operation is such that the turbojet engine may be submitted to an extensive analytical treatment. Performance characteriatica are put in a conveniently ueable form by grouping these many dimensional variablea into non-dimencional aimilarity paramoters. Advantages of uaing these non-dimeneional parametere are:

1. Better control of these parameters is achieved than can be obtained with the original variables.
2. There are fewer parametere than there were variables so that they can be presented and understood more readily.
3. Fewer teat points are required to presint the complete performance capabilities of an ongine throughout its operating range.

Dimensionlese parameters can be determined by the dimensional analyois methods outlined in the following paragraphs. It is omphasized that there are many sets of independent dimencionless parameters which can be formed from a given set of independent variables, and judgment must be exercised in selecting parameters which have the proper significance.

2. 2 APPLICATION OF DIMENSIONAL ANALYSIS

The traditional method of applying dimensional analysis is by means of the Buckingham π Theorem. From this theorem it is learned that if in a given problem there are n independent variables (dimensional) and k basic dimensions, (e.g., length, time and mass), then there only ($n-k$) truly independent non-dimensional (similarity) parameters associated with the problem. Buckingham gives these nondimensional parameters the symbolic notation $\pi_{1}, \pi_{2} 2 \ldots \pi n-k$.

A method for determining the form of these parameters is described below.

Each of the parameters determined by dimensional analysis will be composed of the product of variables raised to some power. The determination of these exponent e is the central problem of dimensional analysis. One variable in each parameter can be chosen arbitrarily to be raised to the first power. Ae a matter of convenience those first power terms are made those of primary interest (e.g., drag, lift, fuel flow, etc.). Symbolically, the pi-paramotera are written

$$
\begin{aligned}
& \nabla_{1}=\left(v_{1}^{\alpha_{1}}, v_{2}^{\alpha_{2}}, \ldots v_{k}^{a_{k}}\right) v_{k+1} \\
& \nabla_{2}=\left(v_{1}^{\beta_{1}}, v_{2}^{\beta_{2}} \ldots v_{k}^{\beta_{k}}\right) v_{k+2} \\
& v_{n}=\left(v_{1}^{{ }_{1}}, v_{2}^{4}, \ldots v_{3}^{\beta_{3}}\right) v_{k+n}
\end{aligned}
$$

where
-1.... n arr the dimensionless parameters
$\mathbf{V}_{\mathbf{k}}+1 \ldots . \mathbf{V}_{\mathbf{k}}+\mathrm{n}$ are the variable a of primary interest
$a_{i} \beta_{i} \ldots b_{i}$ are the exponents to be decermined
The exponent are obtained by replacing the variables with their fundamental dimensions of mass, M, length, L, and time, T.

$$
\left[\nabla_{1}\right]=\left[M^{a_{1}} L^{b_{1}} T^{c_{1}}\right]^{a_{1}}\left[M_{L}^{a_{2}} b_{2} T^{c_{2}}\right]^{a_{2}}\left[M^{a_{3}} L^{b_{3}} T^{c_{3}}\right]^{a_{3}}\left[M^{a_{4}} L^{b_{4}} T^{c_{4}}\right]
$$

a_{1}, b_{1}, c_{1} are known numbers, for example,

$$
[\text { Velocity }]=\left[M^{0} \cdot L^{1} T^{-1}\right]
$$

The variablea are combined into terma having the dimenaione $\left[M^{0} L^{0} \mathbf{T}^{0}\right]$ wo may write

$$
\begin{gathered}
{[\pi]=M^{o} L^{o} T^{0}=1=M^{a} a_{1}+a_{2} a_{2}+a_{3} a_{3}+a_{4} L^{b_{1} a_{1}}+b_{2} a_{2}+b_{3} a_{3}+b_{4}} \\
T^{c} 1^{a_{3}}+c_{2} a_{3}+c_{3} a_{3}+c_{4}
\end{gathered}
$$

Now equating exponente of tike terme

```
for \(M \quad a_{1} a_{1}+a_{2} a_{2}+a_{3} a_{3}+a_{4}=0\)
for L \(\quad b_{1} a_{1}+b_{2} a_{2}+b_{3} a_{3}+b_{4}=0\)
for T \(\quad c_{1} a_{1}+c_{2} a_{2}+b_{3} a_{3}+c_{4}=0\)
```

These are three aimultaneous equations which can be used to determine the threc unknowne, a1. a2, and a_{3}.

If the factors affecting the performance of a turbojet ongine are divided into dependent and independeat variables, we may liat them as in the following table:

Dependent Variable
airflow, wa
fuel flow, wif
exhaust ges temperature, T_{t5}
thrust, F_{g} or F_{n}
Independent Variable
inlet total pressure, $\mathrm{P}_{\mathrm{t} 2}$
inlet total temperature, T tz
engine speed, N
free-stream static preseure, P_{a} nozzle area, A_{8}
flight apeod, V

Unite	Dimeneione
lb(mase)/sec	M T^{-1}
ft lb/soc	$M L^{2} \mathrm{~T}^{-3}$
${ }^{-K}$	$L^{2} T^{-2}$
lb	MLT ${ }^{-2}$
Unite	Dimensione
$\mathrm{lb} / \mathrm{ft}^{2}$	ML ${ }^{-1} \mathrm{~T}^{-2}$
- K	$L^{2} \mathrm{~T}^{-2}$
rad/sec	T^{-1}
$\mathrm{lb} / \mathrm{ft}^{2}$	$M L^{-1} \mathrm{~T}^{-2}$
ft^{2}	L^{2}
$\mathrm{ft} / \mathrm{sec}$	$\underline{L T}{ }^{-1}$

NOTE: Units are those most convenient for dimensional analysia and do not necessarily conform to those in other actions. Temperatures are considered a measure of enthalpy and fuel flow as energy input. Temperatures, pressures and area were selected at stations, (Heference Figure 2.1), to give the most useful results. Values at other atation might be used without invalidating the resulta.

Figure 2.1
Turbojet Engine Station Deaignationa

The above atation designations aro generally used as aubecripto:

0	free stream
1	inlet duct
2	compreseor inlet
3	compreseor outlet
4	turbine inlet
3	turbine outlet

tailpipe inlet
tailpipe outlet
8
jet nozzle outlet
As an example of the application of dimensional analyais, consider thrust as a function of the independent variables taken from the preceding table.

$$
F_{g}=i\left(P_{t_{2}}, T_{t_{2}}, N, P_{\mathbf{a}}, A_{8}\right)
$$

Since there are aix variables and three fundamental units, we can determine three pi-parameters, which can be expreened in an equation made up of three dimensionless numbera.

$$
\begin{aligned}
& \pi_{1}=P_{t_{2}}, T_{t 2}, A_{8}, F_{g} \\
& \pi_{2}=P_{t_{2}}, T_{t_{2}}, A_{8}, N \\
& \pi_{3}=P_{t_{2}}, T_{t_{2}}, A_{8}, P_{a}
\end{aligned}
$$

Substituting their dimensions in place of the variables,

$$
\begin{aligned}
& {\left[\pi_{1}\right]=\left[M L^{-1} T^{-2}\right]^{a_{1}}\left[L^{2} T^{-2}\right]^{a_{2}}\left[L^{2}\right]^{a_{3}}\left[M_{L T}^{-2}\right]} \\
& {\left[\pi_{2}\right]=\left[M L^{-1} T^{-2}\right]^{a_{1}}\left[L^{2} T^{-2}\right]^{a_{2}}\left[L^{2}\right]^{a_{3}}\left[T^{-1}\right]} \\
& {\left[\pi_{3}\right]=\left[M L^{-1} T^{-2}\right]^{a_{1}}\left[L^{2} T^{-2}\right]^{a_{2}}\left[L^{2}\right]^{a_{3}}\left[M^{-1} T^{-2}\right]}
\end{aligned}
$$

After solving for exponente wo have,

$$
\pi_{1}=\frac{F_{g}}{A_{8} P_{t_{2}}}
$$

$$
\begin{aligned}
& \nabla_{2}=\frac{N \sqrt{A_{8}}}{T_{t_{2}}} \\
& \nabla_{3}=\frac{P_{2}}{P_{t_{2}}}
\end{aligned}
$$

Therefore,

$$
\frac{F_{8}}{R_{8} P_{t 2}}=1\left(\frac{N V_{1}}{\sqrt{T_{t 2}}} \cdot \frac{P_{1}}{F_{t 2}}\right)
$$

Eliminating the area (A8) for an engine of constant else and laverting
"3 to form ram pressure ratio,

$$
F_{t_{2}}=1\left(\frac{N}{\Gamma_{t_{2}}} \cdot \frac{P_{t 2}}{P_{2}}\right)
$$

It is conventional to refer temperatures and pressures to standard sea level conditions by making the following substitutions,

$$
{ }_{82}\left(\frac{P_{12}}{P_{A S L}}\right) \text { for } P_{t 2}
$$

and

$$
\theta_{t 2}\left(\frac{T_{12}}{T_{81}}\right) \text { for } T_{t 2}
$$

we have,

$$
\frac{F_{1}}{t_{2}}=1\left(\frac{N}{r_{t 2}} \cdot \frac{P_{t 2}}{P_{t}}\right)
$$

By aimilar analyais the following relationshipa can be developed.

$$
\begin{aligned}
& \frac{w_{t} \sqrt{\theta_{t 2}}}{\delta_{t 2}}=f\left(\frac{N}{\sqrt{\theta_{t 2}}} \cdot \frac{P_{t 2}}{P_{t}}\right) \\
& \frac{w_{t}}{\theta_{t 2} \sqrt{\theta_{t 2}}}=f\left(\frac{N}{\sqrt{\theta_{t 2}}} \cdot \frac{P_{t 2}}{P_{a}}\right) \\
& \frac{T_{t t}}{\theta_{t 2}}=1\left(\frac{N}{\sqrt{\theta_{t 2}}} \cdot \frac{P_{t 2}}{P_{a}}\right)
\end{aligned}
$$

These equatione remaln valid with the addition or deletion of conetante although the parametera are no longer dimenalonlese.

Thus fary we have considered only the iadependent variables whish have a primary effect on pexformance. Other fectors, auch ae vincoue effecte, combuation efficioncy, and the ratto of epectiflc heate have secondary effocte on performance particularly at high altitudes and high Mach numbers. It is pointed out that engine manufacturers frequently publioh correction curves to be used in conjunction with non-dimeneional performance plots which account for these secondary effocte.

SECTION 3
AIR INDUCTION SYSTEM PERFORMANCE

3.1 GENERAL COMMENTS

Performance curves for an engine installed in an aircraft are usuadly presented in terme of conditione exieting at the compressor face, i.e.. $T_{t_{2}} / T_{t_{0}}$ and $P_{t_{2}} / P_{t_{0}}$. Adiabatic flow is assumed 60 that $T_{t_{2}}=T_{t_{0}}$ which can be calculated from the free-atream Mach number and ambient temperatures. In order to determine $P_{t_{2}}$ it is nececeary to ovaluate the total preseure losees between the free-stream, atation " O ", and the compreseorface, etation " 2 ". When these losece are evaluated, the ergine performance curves may be obtained in terme of alrcraft apeed, altitude and free-alr tomporature.

Alr-iniet efficiency is generally expreseed in terms of the preseure recovery, $P_{t_{2}} / P_{i_{0}}$ bacause it can be shown by a aimplified analyais of the turbojet ongine that thic paramoter is directly related to both the net thrust and fuel conoumption. For example,

$$
\frac{F_{n_{1}}-F_{n_{1}}}{F_{n_{1}}}=L\left(1-\frac{P_{t_{2}}}{P_{t_{0}}}\right)
$$

where

$r_{n 1}$ $r_{n a}$	* Ideal nat thrust, $\left(P_{t_{2}} / P_{t_{0}}=1.0\right)$ - actual net thrust
P_{10}	- free-atream total proseure
P_{12}	- total pressure at sompreseor face
L	allicioncy

L ie alwaye greater than 1.0 and is determined by engine deaign and flight conditione. If the thruat loes ie determined for an engine, values of the parameter $\left(\Delta F_{n} / F_{n_{1}}\right) /\left(\Delta P_{t_{2}} / P_{t_{0}}\right)$ are ueually betroen 1.2 and 1.8. Hence, a percent loes in preseure recovery may result in a 1.8 percent lose in net thrust.

The parameter ram efficiency, η_{1}, is sometimes used to indicate duct losses.

$$
\eta=\frac{P_{t 2}-P_{a}}{P_{t_{0}}-P_{a}}
$$

where P_{a} is free-stream static prosesura.
Experience has proven that η ie a useful parameter for expresaing the inlet lonses in abbeonic flow. A converaion between ram efficiency, η_{1} and total preesure recovery, $P_{t_{2}} / P_{t_{0}}$ can be expreseed ae

$$
\begin{equation*}
\frac{P_{52}}{P_{t_{0}}}=\frac{1+\eta\left[\left(1+\frac{Y-1}{2} M_{0}^{2}\right)^{\frac{Y}{Y-1}}-1\right]}{\left(1+\frac{Y-1}{2} M_{0}^{2}\right)^{Y}{ }^{Y}-T} \tag{3.}
\end{equation*}
$$

If $Y=1.4$ and $B=1+\frac{Y-1}{2} M^{2}$ thif becomee

$$
\frac{P_{t 2}}{P_{t_{0}}}=\frac{1+\eta\left(B_{0}^{3.5}-1\right)}{B_{0}^{3.5}}
$$

This expression in plotted in Chart 9.1.
In the discussion which follows, some of the factors which affect inlet efficiency and approximate methode for eatimating the inlet total pressure losses (providing experimental data are not avallable) are discuased.

3.2 SUBSONIC FLIGHT

Inlet total pressure lossee which occux during take-off (or static run-up) and at subsonic flight apeede may be conveniently conoidered as (a) inlet-entry lonses and (b) aubsonic-diffucer losees.

3.2.1 Inlet Entry Losecs:

Entry losecs occur mainiy from flow esparation at the inlet lips or from the ingestion of boundary-layer flow in the inlet. Inlet total-preseure loeses caused by flow interference from aircraft componente other than the air induction system are amall at subsonic apeede and are ueually neglected. Lip losses are important for those conditione where the local atagnation-point atreamline occure outside of the inlet lip (1.e., angle of attack oparation with sharp lipped inlete. or for mase flow ratioe greater than 1.0 as illustrated in Figure 3.1c).

Figure 3.1
Schematic Represontation of Mase Flow Ratio

For low speeds and large mase flow ratios, lip separation occurs and a vena contracta is formed within the inlot giving rise to relatively high cotal pressure losese. Since aircraft deaigned for supersonic flight generally have ahasp inlet lips, the separation condition is aggravated and these aircraft suffer large total pressure losese during atatic run-up and take-off. The curves in Chart 9.2 give the average preacure recovery, $\left(P_{t_{1}} / P_{t_{0}}\right)_{\text {LIP }}$ for a number of model and full scale inleta at zero and low forward apeseds. In order to increase these poor lowspeed presare recoverice and provide an adequate adr supply for the engine, some aircraft deaigned for high-apeed flight have auxiliary talate or "blow in" doors. These auxiliary inlete reduce the operating mase flow of the main inlet and dmprove the overall pressure recovery.

Boundary-layer flow may enter the inlet for a aide inlet installation and give rise to a lose in pressure recovary over a portion of the talet area because of the local velocity proflle. Le experimental date ie not avallable on losese due to the boundary-layer affects, an eatimate of these lossen may be made from the foliowing consideratione.

For most installations the entering boundary layer is considered to be turbulent. Boundary-layer thickness, 6 , may be estimated for $\alpha=0$ degrees by use of Chart 9.3*. Angle of attack effects on boundary-layer thickness may be estimated from the following equation for emall angles of attack:
where $\quad \delta_{0}=$ boundary-layer thicknese at $\alpha=0$
and $\delta_{x}=$ bnundary-layer thicknese at angle of attack of α
FIFtho inctiolocated on the nose portion of the fueelage (i. e.. in a flow field more conical in nature than two-dimenoional) these boundary-layer thicknesses chould be modified by the Mangler traneformation factor $4 \sqrt{3}$. For example,

$$
{ }^{6} \text { conical }=\frac{1}{\sqrt{3}} \delta_{\text {flat plate }}
$$

It should be noted that equation 3.5 in applicable only for underslung inlet locations and should be used with caution for other circumferential locations because considerable error may result. (This te especially true at supersonic speeds at will be pointed out later.)

Moet eide -inlet installation have a boundary-layer diverter, or scoop, such an that schematically shown below.

Figure 3.2
Boundary Layer in Sideninlet Installation

The effect e of boundary-layer profile on the inlet losses may be calculated in the absence of shock wave boundary-layer interaction for this type of installation with the ald of Chart 9.4* and the following equation for the average value of pressure recovery.

Wotednat for most cases a turbulent boundary layer is assumed and it is sufficiently accurate to use a $1 / 7$ power velocity profile approximation.

$$
\left.\left(\frac{P_{t}}{\boldsymbol{P}_{t_{0}}}\right)_{a v g}=\frac{P_{t}}{P_{t_{0}}}\right]_{d / 0}^{1.0} \frac{A_{B L}}{A_{0}}+\frac{P_{t_{1}}}{P_{t_{0}}} \frac{A_{0}-A_{B L}}{A_{0}} \quad 3.6
$$

where $P_{t 1} / P_{t_{0}}\left[\begin{array}{l}1.0 \\ d / \delta\end{array}\right.$ denotes the average presuure recovery of that part of the boundery layer which is ingested into the duct. (Note that if $d / 8$ Z 1.0 no correction is required and $A_{B L}=0$.) In manycasea $P_{t} / P_{t_{0}}$ is approximately 1.0 ; however, thie term must be ovaluated at the ame atation at which the reference area A_{0} is taken. (Reforence Figure 3.2.)

3.2.2 Internal Boundary-Layer Removal Syateme:

An aircreft iniet deaigned for high-apeed flight may have an internal boundary-layer removel eyetem. Losees are incurred in the uee of euch a bytem, whether atm ecoop or auction through alots or perforatlone. The boundery-layer removal yetem loesee are usually eo large that a complete lose in free-straam momentum is usually asamed for the mase flow through the removal system. For example,

$$
D_{B L}=m_{B L} V_{0}
$$

where
$\mathrm{D}_{\mathrm{BL}}=$ boundary-layer removal system drag
$\mathrm{m}_{\mathrm{BL}}=$ boundary-layer removal system mass flow

If the manufacturer does not specify the mase flow, the lose with a ram ecoop may be estimated as follows with the add of Chart 9.5. (Note that a $1 / 7$ power velocity profile assumption is edequate for this estimate.) Since the drag. D_{BL}. is the change in momentum of the alflow in the direction of flow then,

$$
\begin{align*}
D_{\mathrm{BL}} & =\phi_{0}-\phi_{1} \\
& =\left(1-\frac{\phi_{1}}{\phi_{0}}\right)
\end{align*}
$$

where the momentum ratio, ϕ_{1} / ϕ_{0}, may be obtained from Chart 9.5 and ϕ_{0} from the following relation.

$$
\phi_{0}=Y P_{a^{\prime}}{ }_{0}^{2} A_{B L}
$$

3.2.3 Subsonic Diffuser Losses:

Subsonic diffuser losses are concerned with those losses within the inlet between atations 1 and 2. Factore which contribute to these lossem are skin friction, duct expansion and duct bende or offeete. Total pressure losese resulting from friction and duccit expanaion can be calculated if one-dimeneional compressible flow and no change in skin friction coofficient with longth are assumed. The rosults of auch a calculation are chown in Chart 9.6 where the skin friction coefficient C_{f} is ueually estimated with sufficient accuracy from Von Karman's approximate formula for turbulent flow.

$$
C_{f}=\frac{.074}{\left(R_{e}\right)^{1 / 5}}
$$

$R_{0}=$ Reynolds number based on averace flow properties in the duct and the duct length.
Values of the parameter ($\frac{1}{d_{2}} \times \frac{C_{f}}{.003}$) between those given in Chart 9.6 can be obtained with aufficiont accuracy by linear interpolation. Here \dot{d}_{2} is the hydraulic diameter of the duct at the compressor-face station. Total pressure lossee due to compound duct bende may be oatimated with sufficient accuracy by uee of Chert 9.7. In this figure the lose coefficient, K_{B}, is related to the duct total
pressure loss through the following relation.

$$
\begin{equation*}
\frac{P_{t_{2}}}{P_{t_{1}}}=1-K_{B}\left(1-\frac{1}{B_{1}^{3.5}}\right) \tag{3. 11}
\end{equation*}
$$

where

$$
B_{1}=1+\frac{Y-1}{2} M_{1}^{2}
$$

Even though Chart 9.7 is plotted for 90 -degree bends the loes coefficients for bends other than 90 degrees may be obtained by aimple interpolation, (e.g., for 45 -degree bende the loes coefficient is reduced by about $1 / 2$). All bends must be generously radiused, however, so that boundary-layer separation does not occur.

The total pressure losese for the entire inlet in aubeonic flow may now be expressed an followa:

$$
\frac{P_{t_{2}}}{P_{t_{0}}}=\frac{P_{t_{1}}}{P_{t_{0}}} \times \frac{P_{t_{2}}}{P_{t_{1}}}
$$

where

$$
\begin{align*}
& \frac{P_{t 1}}{P_{t_{0}}}=1-\left[\left(1-\frac{P_{t_{1}}}{P_{t_{0}}}\right)_{B L}+\left(1-\frac{P_{t 1}}{P_{t_{0}}}\right)_{L I P}\right] \\
& \frac{P_{t 2}}{P_{t_{1}}}=1-\left[\left(1-\frac{P_{t_{2}}}{P_{t_{1}}}\right)_{\text {friction }}+\left(1-\frac{P_{t_{2}}}{P_{t_{1}}}\right)_{\text {bends }}\right] 3.13
\end{align*}
$$

3.3 SUPERSONIC FLIGHT

Inlet cotal pressure losses which occur during eupersonic flight may be calculated from a consideration of the pressure losses aseociated with the following:

1. Supersonic compression.
2. Entering stream-tube flow non-uniformities (i.e., boundarylayer flow, aircraft attitude effects, interferences effects, etc)
and unsteadiness.
3. Subsonic diffuser design.

The overall performance of the inlet may then be calculated in exactly the same manner as that given in equations 3.12 through 3.14 provided that all total pressure loss factors are included.

3.3.1 Supersonic Compression:

Total pressure losses due to supersonic compression may be calculated from the geometry of the inlet and free-stream Mach number. Theoretical pressure recoveriea of normal shock, twoshock and three-shock external compreation inlets are illustrated in Figure 3.3.

Figure 3.3
Maxdmum Pressure Recovery, All External Compression

From this figure it may be seen that even the relatively aimple two-shock external compression inlet exhibits considerable pressure advantage over the normal shock inlet at Mach numbers over about 1.5. At Mach 2.0, for example, the two-shock inlet operates with a 20 percent improvement in pressure recovery. This may result in approximately 40 percent more thrust for a two-shock inlet than for one using a normal shock inlet. At Mach numbera much above 2.0 even the two-shodk inlet yields excessive preseure losses and the more complicated flow geometries appear advantageous. For open nose inlets the total preseure ratio, $P_{t_{l}} / P_{t_{0}}$, may be obtained directly from the free-atream Mach number and the normal shock presaure ratio given on Chart 9.8. Preseure ratios obtained with other types of inlete are shown in Charts 9.9 through 9.11.

An additional lose arises from the momentum change in the inlet stream-tube between the free-stream and the inlet face when no aircraft components other than those of the air induction eystem interfere with the stream-tubs. This momentum lose occure at mase flow ratios less than one and is commonly called "pre-entry thrust" or "additive drag". Ae defined in Section 1, prementry thrust io the axial component of the pressure force on the diverging portion of the entering etream-tube between station 0 and etation 1.

Expressions for the calculations of additive drag have been developed in coefficient form, $\left(C_{d}=D_{a} / q_{o} A_{c}\right)$. For open nose inlets,

$$
C_{d_{a}}=\frac{2}{M_{0}} 2\left[\frac{B_{0}^{3.5}}{B_{1}^{3.5}} \frac{P_{t}}{P_{t_{0}}}\left(Y M_{1}^{2}+1\right)-1-\frac{A_{0}}{A_{1}} Y M_{0}^{2}\right] 3.15
$$

For external compression inlets,

$$
\begin{align*}
C_{d_{a}}= & \frac{2}{Y M_{0}^{2}}\left[\frac{A_{1}}{A_{c}} \frac{B_{\Omega}^{3}}{B_{1}^{2}}{ }^{3.5} \frac{P_{i 1}}{\mathbf{P}_{t_{0}}}\left\langle Y M_{1}^{2}+1\right) \cos \lambda\right. \\
& \left.+\frac{A_{r}}{A_{c}} P_{S_{0}}-1-\frac{A_{0}}{A_{c}} Y M_{0}^{2}\right]+C_{f} \frac{A_{r}}{A_{c}}
\end{align*}
$$

where
$C_{d_{2}}=$ additive drag coofficient
$90=$ froe-atream dynamic pressure
$A_{C}=$ inlet capture area
$A_{r}=$ ramp or other compresion surface area
$P_{r}=$ effective static pressure on compression surface forward of station 1

The results obtained from these equations are plotted in Charts 9.14 and 9.15. Aleo shown in Chart 9.15 1s the variation of cowl position paraneter (angle between axie of inlet and etraight line connecting tip of center body with lip of cowl), $G_{\mathcal{L}}$, with maes flow. This parameter is ueeful for the determination of the maximum maseflow ratio obtainable through a given conical inlet for a particular teat concition.

Variatione in inlet drag ronulting from changee in mase flow through the inlet will cause changes in the cowl-lip suction force as woll as additive drag. At subsonic epeeds these two forces cancel each nther and no calculation for either is neceesary. However, at speeds juat above sonic both forces must be calculated for an accurate determatnation of inlet net drag. At Mach numbere over about 2.0 additive drag becomes the dominating factor and lip euction forcen are amall (usually negligible) for elender, aharp-lipped inlete*. For

FSTender whaxp-ifpped inlete are defined as inlete with cowl angles lese than 5 degrees and by thickness with the ratio lip thickness/inlet radius lese than about 0.07.
nose inlet installations Chart 9.16 may be used for estimating lip suction effects at mass ratios greater than about 0.8 . Included in this figure is the corresponding increase in additive drag coefficient to illustrate the relative magnitude of the two forces. For blunt-lipped installations and large cowl angles, experimental results are required to determine lip suction effects.

3.3.2 Flow Non-Uniformities and Unsteadiness Effects:

The major total pressure losses resulting from flow nonuniformity of the inlet face are caused by an entering boundary layer. These total pressure losses may be treated in the same manner discuseed previously for subsonic flight; however, the correction for angle of attack effecte on boundary-layer thicknees must be obtained from experimontal data for inlet locations other than the underslung type. This is necesary because experimental results have shown as much es 15 to 20 percent low in $P_{t z} / P_{t_{0}}$ with variatione in circumferential position of the inlet and angles of attack as low as 4 to 6 degrees.

Excesaive alrflow distortion at the compreaeor face may result from operation at "off-design" conditione. Inlet performance may be degraded from Mach number and altitude effects ae well as from subcriticai or upercritical operation. L shock wave boundary-layer eeparation occure this condition may be considerably aggravated. With supercritical operation as shown in Figure 3. 4C the preseure drop across the normal shock is increased and a lowor pressure recovery realte. Subcritical flow an in Figure 3.4A is accompanied by a reduction in mase-flow ratio with a coneuquent increase in additive drag. Lf the reduction in mass flow ratio io too great, "Inlet buzz". diacussed in the following paragraph, will occur.

Figure 3.4
Operational Modee of Supereonle External Compresion Inleta

Large variations in flow uniformity will give rise tu thrust Lose exceseive fuel coneumption, lose ol acceisration margin, hot spota, local blede stalling (rotating compressor etalt) and ongine vibration with posaible atrictural fatiuro.

Inlet aperation at abcritical maen-flow ratioe may result In an unotady flow condition commoniy called "inlet buzz". This opwration ia characterized by rapid changea in the inlet flow pattern which resulte in rapid fluctuations in in drag as well ae total.preseure
ratio. Severely reduced engine performance results and for some buzz condilsona compressor stall, flame-out, or structural fallure may occur.

Flow non-uniformity may also arise from interference effects of other aircraft components on the inlet atream-tubs and these effects must be determined from experimental data because no simple means for estimating the magnitudes of these effecte exista for all the diverse combinations of flight attitudes and aircraft geometries.

3.3.3 Subsonic Diffuser Losses:

Subsonic diffuser total pressure losses are calculated in a manner eimilar to that described in paragraph 3.2.3. The entering flow conditione are taken as those just down-atream of the terminal shock and the length of the subsonic diffuser measured from this point.

SECTION 4
 STANDARDIZATION OF TEST DATA WITH ENGINE PARAMETERS

4.1 LNTRODUCTION

In the proces: of atandardizing test data obtained under off-standard conditione, it ia necesaary that correctione be made based on the engine parameters developed in Section 2. For example, rate of climb determined during climb tests may be corrected to standard engine apeed and atandard temperature throagh the use of correction curves plotted as $F_{n} / \sigma_{t 2}$ veraue $N / \sqrt{\theta_{a}}$. These curves are computed from the engine manufacturer' estimated minimum performance curves, as described in Data Reduction Outline 8.1. (Typical estimated minimum performanco curves for an engine vith a fixed nozzle are illustrated in Figure 4.1.) Thie correction and othere using non-dimensional parametore are made quite readily for aircraft with simple jet engines but are not generally applicable to more advanced engines. Use of the fuel flow parameter and the exhaust gas temperature parameter for establiohing corrections for aimple jet ongines is described tn paragraphe 4.2 and 4.3. Similar corrections for more advanced engines are discuesed in paragraph 4.4.

4.2 FUEL FLOW PARAMETER

The engine manufacturer's eatimated fuel flow curvea are eoldom used in flight teating, aince flow rates are measured with test inctrumontation. The eame parameter are used, ($w_{1} /{\sqrt{\theta_{t 2}}}^{6} t_{t_{2}}$ versue $\left.N / \sqrt{\theta_{t_{2}}}\right)$ in ploting test fuel flow data, however, as are found in estimated curves furnished by the engine manufacturers. Teat fuel flows are corrected to standard conditions using test data plotted in this form.

Figure 4.1.
Typlcal Turbojet Engine Characterietice

The effects of changes in specific heat ratio, sombustion efficiency, Reynolde number, etc., were neglected, (Reforence Section 2), when the dimensionless parameters were developed. Consequently, an exact correlation of test data obtained over a wide range of flight apeeds and altitudes cannot be expected. At altitudes up to about 35,000 feet, (depending on the engine design), quite good correlation can be expected. At higher altitudes, however, the neglect of the change in Reynolde number, in particular, becomea increasingly important, and separation from the basic polar occura as illustrated in Figure 4.2.

At normal in-flight operating conditione there it no apparent effect from changes in $P_{t 2} / P_{a}$. At low altitudes with low power settings when flow at the nozzle exit is eubcritical, lines of constant $P_{t 2} / P_{a}$ diverge from the basic polar as shown in Figure 4.2.

4.3 EXHAUST GAS TEMPERATURE PARAMETER

Plots of corrected exhaust gae temperature vereue corrected rpm from flight test data can be used to apply corroctione to exhaust gas temperature and other performance variablec. The correctione are necesaary when an ongine is operated at other than standerd oxhaust gas temperature. For example, correctione to exhaust gas temperature, thrust and rpm may be made as described In Data Reduction Outline 8. 2.

4.4 ADVANCED ENGINES

Many different configurations in noselee, ejectors, control eyateme, etc., are in use or will be inctalled in future alreraft. Because of the variety of configuractone which exiet and are planned, it ie not practical nor poseible to deacribe methode for correcting engine datm to otandard conditione which are suitable for each type. It frequently in not immediately evident at to when non-dimeneional methode are applicable. The characteriatics of each of the more complex engines should be etudied 00 that methode may be modified ae required for the individual case, and the best meane chosen for making corrections to standard conditione.

SECTION 5

AIRFLOW MEASUREMENT

5.1 INTRODUCTION

Ae was seen in Section 3.1, the thrust of a turbojet engine is dependent on ram drag which requires a knowledge of maes flow through the ongine. Three methode of measuring ongine airflow in flight have been generally used and are discussed in this Section.

5.2 ENGINE COMPRESSOR AIRFLOW CURVES

Of the three methode for determining airflow, uee of engine compresnor airflow curves furniehed by the engine manufacturera is moet common. These curvee are generally plotted as

where

$$
\theta_{t_{2}}=T_{t_{2}} / T_{S L} \text { and } \delta_{t 2}=P_{t_{2}} / P_{S L}
$$

Compreesor talet total temperature, $\mathrm{T}_{\mathrm{t} 2}$, ta computed from ambient temperature and free atream Mach number assuming adiabatic flow. Compressor inlet preseure, $P_{t 2}$, is obtained preferably by measurement, but if inlet instrumentation is not instelled it can be computed from total free atream preasure and estimated total presure recovery.

5.3 INLET DUCT METHOD

Alrflow can be measured from total temperature and surveye of total and atatic preseure forward of the comproesor face. From continulty

$$
m=\frac{W_{a}}{E}=\rho V A
$$

where

$$
\begin{aligned}
& m=m a s s \text { flow, slugs/second } \\
& w_{\mathbf{a}}=\text { weight flow, } \mathrm{lb} / \mathrm{second} \\
& \mathbf{p}=\text { density, sluga/ft } \\
& \mathbf{v}=\text { velocity, ft/second } \\
& \mathrm{A}=\text { annular area, } \mathrm{ft}^{2}
\end{aligned}
$$

p. V and A represent values at the station where prossure measuremente are taken.
Assuming a perfect gas

$$
p=\frac{P_{B}}{g R T_{s}}
$$

where
$P_{B}=$ atatic proseure, $\mathrm{lb} / \mathrm{ft}^{2}$
$R=g a s$ conetart, ft-lb/Lb $\cdot \mathrm{K}$
$T_{B}=$ static temperature, ${ }^{\bullet} K$

$$
V=M \sqrt{\delta V}_{B}
$$

where

$$
\begin{aligned}
M & =\text { Mach number } \\
V & =\text { ratio of apocific heats }
\end{aligned}
$$

Subetituting equatione
5.2 and
5.3 in equation
5.1

$$
w_{a}=\frac{P_{g} A}{R_{0}} M \sqrt{g V R T_{g}}
$$

or

$$
w_{a}=P_{g} A M \sqrt{\frac{\mathrm{Kg}_{\mathrm{g}}}{\mathrm{R}_{\mathrm{g}}}}
$$

From the insentropic relation

$$
M=\sqrt{\frac{2}{Y-T}\left[\left(-P_{f}^{P_{B}}\right)^{\frac{Y-1}{Y}}-1\right]}
$$

and

$$
T_{t}=T_{0}\left(1+\frac{Y-1}{2} \quad M^{2}\right)
$$

Subotituting equations 5.5 and 5.6 in equation 5.4

$$
w_{a}=P_{a} A \sqrt{\frac{2 Y}{\gamma-T} \frac{g}{R T_{t}}\left[\left(\frac{P_{t}}{P_{s}}\right)^{\frac{Y-1}{Y}}-1\right]\left(\frac{P_{5}}{P_{0}} \frac{Y-1}{Y}\right.}
$$

$$
5.7
$$

Total pressure surveys are commonly made by dividing the duct into equal annular areas with preseure probes located to measure the preseure in each oi these areas. Probes should also be located near the wall of the duct to account for boundary-layer effecta. Care chould be taken to locate the total pressure probee in a etraight portion of the duct, and that no etrute or other obetructione which would cause pressure gradiente are immediately upetroam of the probes. Static prossuree are measured fitom either pick-upe located on the total preseure rakee or from wall static tape or a combination of both.

Figure 5.1
Typical Inlet Duct Pressure Instrumentation

5.4 TAILPIPE TEMPERATURE METHOD

Gas flow at the nozsle (which includes both air and fuel) can be calculated using the same basic equations that were used to compute airflow from inlet pressure measurements. Gas flow is frequently expressed as:

$$
\frac{w_{g 8}}{P_{88}} \frac{\sqrt{T_{18}}}{A_{8}}=M_{8} \sqrt{\frac{Y g}{R}\left(1+\frac{y-1}{2} M_{8}^{2}\right)}
$$

In an ideal converging nozzle the static diacharge prosaure (Feg) remaine conatant and equal tothe ambient preseure (P_{a}) until, as the total diecharge pressure $\left(P_{t_{8}}\right)$ ic increased, the maximum obtainathle Mach number of on ie reached. An $P_{t 8}$ ie increaeed further the Mach. number remains at one and P_{8} risea above P_{a} but the ratio of P_{t} / P_{8} remaine constant. An oxit Mach number lese than one is called eubcritical and a Mach number of one is called supercritical.

Subcritical	Supercritical
$\mathrm{P}_{18} / \mathrm{Pa}_{8} \times 1.85$	$\mathrm{P}_{18} / \mathrm{Pa}_{8}=1.85$
$\mathrm{Pa}_{88}=\mathrm{Pa}_{\text {a }}$	$\mathrm{Pa}_{8}>\mathrm{Pa}_{\text {a }}$
$M_{8}<1.0$	$M_{88}=1.0$

Mach number at the axit is:

$$
M_{8}=\sqrt{\frac{2}{Y-1}\left[\left(\frac{P_{t 8}}{P_{88}}\right)^{\frac{Y-1}{Y}}-1\right]}
$$

Substituting equation 5.9 in equation 5.8 and applying atandard unite, the abcritical flow equation becomes:

$$
\frac{H_{10} \sqrt{T_{19}}}{P_{2}}=116.23 \sqrt{X(1+X)} \quad 5.10
$$

where

$$
\mathbf{R}_{8}, \mathbf{P}_{\mathbf{8}}, \mathbf{P}_{\mathbf{a}}={ }^{\prime} \mathrm{H}_{g}
$$

$$
\begin{aligned}
& \mathbf{g}=32.174 \mathrm{ft} / \mathrm{sec}^{2} \\
& \mathbf{Y}=1.33 \text { (non-afterburning) } \\
& \mathbf{R}=96.031 \mathrm{ft} /{ }^{\circ} \mathrm{K} \\
& \mathbf{A}_{\mathbf{g}}=\mathrm{ft}^{2} \\
& \mathbf{w}_{\mathbf{B}}=1 \mathrm{~b} / \mathrm{eec} \\
& \mathbf{P}_{\mathbf{a}}=" \mathrm{Hg} \\
& \mathbf{X}=\left(\frac{P_{t 8}}{\mathbf{P}_{8}}\right) \frac{\mathrm{Y}-1}{Y}-1
\end{aligned}
$$

For supercritical flow with $\mathrm{M}_{8}=1.0$, equations 5.9 may be written:

$$
P_{88}=P_{t 8}\left(\frac{2}{T_{+}}\right) \frac{Y}{Y-1}
$$

Substituting equation 5.81 in equation 5.8 with $M=1.0$,

$$
\frac{W_{g 8} \sqrt{T_{t 8}}}{P_{a} A_{8}}=\left(\frac{2}{Y_{+1}}\right)^{\frac{Y}{Y+1}} \sqrt{\frac{2 g}{R}\left(1+\frac{\gamma_{1} 1}{2}\right)} \frac{P_{t_{B}}}{P_{a}} 5.12
$$

Assuming $Y=1.33$ for engine operation,

$$
\frac{w_{88} \sqrt{T_{t 8}}}{P_{a} A_{8}}=27.54 \frac{P_{t 8}}{P_{8}}
$$

Assuming $\gamma=1.28$ for afterburner operation,

$$
\frac{w_{f 8} \sqrt{T_{t 8}}}{P_{2} A_{8}}=27.15 \frac{P_{t 8}}{P_{a}}
$$

The ideal gat flow parameter, $w_{g 8} \sqrt{T_{t 8}} / P_{a} A_{8}$, is plotted a. a function of $P_{t 8} / P_{a}$ in Charts 9.17 and 9.18.

With a converging-diverging nozzle the gas flow near the nozzle exit where the tailpipe instrumentation is located (as with a swinging rake) becomes supersonic. Since in this case a detached shock stands ahead of the total pressure probe it is necessary to compute Mach number from the Rayleigh supersonic pitt formula.

$$
\frac{P_{t}^{\prime}}{P_{s}}=\frac{\left(\frac{\gamma+1}{2} M^{2}\right)}{\left(\frac{\gamma}{Y+1} M^{2}-\frac{\gamma-1}{\gamma+1}\right)^{\frac{1}{\gamma-1}}}
$$

Use of this equation demands the measurement of static pressure which is quite seneitive to flow alignment. Yaw angles encountered at the nozzle exit are not large enough to cause significant errors in total pressurea, but may produce aizeable errors in static pressure measurement (referen e paragraph 6.6.1).

Determination of airflow from tailpipe instrumentation ia further complicated by difficulties in measuring exhauat gan temperatures, particularly in afterburning, and is probably the least accurate of the three methods described.

Fractical ay!'cations . .f measuring the mormentum chatige of the internal flow to obtain in flight :urust of turbojer engines in aircraft will he preperictinthie gectinn. rie thruet proticed by a simple jet engine with fixed exhaust nozzle is considered in detail in the following paragraph. More advariced engines with afterburners, ejoctors and variable area exhaisat noziles are then considerad ln uccoeding paragraphe.

6. 2 FIXED EXHAUST NOZZLF.

With eubcritical flow it te assumod that the static preseure at the nozrle expands to ambient preseure and grose thrust is defined by the oquation.

$$
F_{g}=F_{v}=\frac{w_{g} 8}{g} \quad V_{g}
$$

where
wg8 = waight flow, lb/sec
$\mathrm{V}_{8}=$ exit velocity, ft/anc
$E_{V}=$ velocity thruat, ib
Subetituting equations $5.1,5.2$, and 5.3 in equation 6.1 we have,

$$
F_{g}=P_{8} A_{8} Y M_{8}^{2}
$$

$$
6.2
$$

Substituting equation 5.5

$$
F_{g}=P_{88} A_{8} \quad \frac{2 Y}{Y-I}\left[\left(\frac{P_{18}}{P_{8}}\right)^{\frac{Y-1}{Y}}-1\right]
$$

$$
6.3
$$

$$
\mathrm{P}_{\mathbf{a}} \frac{\mathrm{F}_{8}}{}+210 \text { is: }
$$

where

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{a}}=\text { ambicist presidio, "tie } \\
& \mathrm{A}_{8}=\text { nozzle } 4 \text { ra, it }{ }^{2} \\
& Y=1.33
\end{aligned}
$$

Subcritical flow can ugly to achieved at low purer dotting at low altitudes. The flow is apercritical los nearly all la-fifyt cunditiune where thrust measurement ia desired. (i.o. . the flow in an ideal converging nozzle is choked and the Mach number at the nozzle exit is unity). In this cases Pas rises above P_{a} and the gross thrust is made up of velocity thrust $\left(F_{v}\right)$ and pressure thrust, $\left(F_{p}\right)$.

$$
F_{p}=A_{B}\left(P_{e 8}-P_{J}\right)
$$

or

$$
F_{P}=A_{8}\left[P_{t_{8}}\left(\frac{?}{Y+1}\right)^{\frac{Y}{Y-i}}-P_{a}\right]
$$

Adding velocity thrust and pressure thrust the following equation may be written

$$
\frac{F_{8}}{P_{8} N_{8}}=\frac{P_{28}}{P_{a}}\left(\frac{2}{i+T^{\prime}} i^{\frac{Y}{Y-1}} \quad(Y+1)-1\right.
$$

substituting constants,

$$
\frac{F_{g}}{P_{8}}=70.727\left(1.259 \frac{P_{t 8}}{P_{a}}-1\right)
$$

The assumption that $Y=1.33$ is made with a suitable degree of accuracy since the variation in Y with exhaust gas tomperature may range from about 1.32 to 1.36, but this variation causes a change in $(2 / Y+1)^{Y / Y-1}(Y+1)$ of less than 0.5 percent.

The ideal grose thrust parameter, $F_{g} / P_{a} A_{8}$, from equations 6. 4 and 6.8 has been plotted as a function of $P_{t g} / P_{a}$ in Charts 9.19 and 9.20.

The preceding derivations are based on an ideal nozzle assuming isentropic one dimensional flow. This condition ie not completely realized, however. A correction factormust be appliod to account for deviations from an ideal nozzle as well as loses from wall friction and errors in pressire measurement.

The correction factor for computing thrust (nozzle thruet coefficiont) is defined as:

$$
C_{f}=\frac{\left.\left(\frac{F g}{A 8}\right)_{a}\right)_{\text {actual }}}{\left(\frac{F_{g}}{\mathcal{A}_{8} P_{a}}\right)_{\text {theoretical }}}
$$

where
Fgactual is the mechanically measured thrust $F_{g} / A_{8} P_{a}$ is the theoretical grose thrust parameter A is nozzle area, ft^{2}
Pa is atmospheric preseure, "kig
Differencee in thruat coefficient exiat between ongine-tailpipe combinations of the ame model. Consequently, for most accurate inflight thruet measurements, a ground static calibration of each ingtallation should be made and repeated if the engine or tallpipe or both are changed. When this is done the nozzle total preseure ratio may be measured atisfactorily with a single probe. Static thrust calibratione may be obtained with the aircraft mounted on a thrust stand or with a
bere engine to which a beflmouth inlet is attached. When installed thrust is determined on a thrust stand, preasure gradients are set up from air entering the inlet duct which may result in pressure forces and give erroneous gross thrust readings. This effect is likely to be most pronounced on high speed aircraft whose inlet total pressure recoveries are quite low at zero forward speed. In a bellmouth inlet pressure drops and consequently pressure forces are minimized.

The maximuns pressure ratios obtained during static thrust calibrations are less than those encountered in flight, except with low power settinge at low altitudes. Pressure ratios of 2 to 2.5, depending on ambient cemperature, are generally found atatically while valuea of 3 to 3.5 are typical for cruise conditione and may be as high as 10 or more at high opeede and altitudes. Consequently, chrust conflicient data obtained during etatic conditione must be extrapolated to higher nozsle preseure ratios in order to compute thrust in flight. For a simple conical noszle the value of thruet coefficient is constant at about 0.98 for nozzle pressure ratios greater than about 1.9 as shown in Figure 6. 1.

Figure 6.1
Tbrust Coefficiont for Simple Conical Nozale

Gross thrust can then be calculated forth-ilight values of $\boldsymbol{P}_{\mathrm{tg}} / \mathrm{Pa}_{\mathrm{a}}$ using the following equations.

Subcritical

$$
\begin{aligned}
F_{g}= & 570.13 P_{a} A_{8} C_{f} X \\
& \text { Supercritical } \\
F_{g}= & 70.727 P_{a} A_{8} C_{f}\left(1.259 \frac{P_{t 8}}{P_{a}}-1\right)
\end{aligned}
$$

Ram drag has been previously defined as

$$
m_{1} V_{0}=\frac{w_{a}}{g} V_{\text {aircraft }}
$$

where
$w_{a}=$ inlot airflow, $\mid \mathrm{b} / \mathrm{sec}$
Substituting unite the following equation may be written

$$
F_{e}=.0525 \mathrm{wa}_{\mathrm{tt}}
$$

where
$V_{t t}=$ airplane teat day true apeed, knote
Engine airflow is determined by one of the three methode described in Section 5.

If tailpipe instrumentation is used, the caiculated gas flow is generally assumed equal to tho inlet airflow. This assumption is
 of the airflow and is approximately the compressor leakage. Also, a gas flow coefficient must be applied to the calculated theoretical gas flow to account for the same deviations from ideal nozzle flow as the nozzle thrust coefficient.

6.3 THRUST AUGMENTATION

Methode of obtaining thrust augrnentation which are in general use 250 afterburalng and, to a lesser extent, water injection. Afterburning is considored in this section and water injoction in Soction 7.

The tusbojet engine may have its thrust increased by a substantial amount by burning additional fuel in the turbine axchaust ahead of the exit nozele. This is possible since the quantity of air passing through the engine it about four timen that required for combustion, and the remaining 75 percent is capable of supporting additional combustion if more fuel is added. An afterbumer ie made up of only four fundamental parto; the afterburner duct,fuel nozzlea or spraybars, flame holders, and two-position or variable area exhaust nozzle.

Figure 6.2
Afterburner Componente

The thruat of an engine with afterburner may be computed as for a simple jat englne. Thrust coefficient data should be oblalned during statle chruet calibratione with the afterburner both on and off (reference Figure 6.3).

Figure 6.3
Thruat Codfictent for Engine with Afterburner and
Two Poaition Nozzle

Measurement of nozzle rotal pressure becomes more difficult with an afterburner-equipped engille becallse of much higher temperatures at the nozzle. A rake may be mounted across the diameter of the nozzle but since the rake is located in the extremely hot gas stream some method of cooling (such as with compressur bleed air) is essential. Also, such a rake is aubject to deterioration from the exteme heat and will probably be rather short lived. When testing bare engines in test chambers, water-cooled rakes mounted at the exhauat nozzle are generally used but have not been found suitable for inetallation in aircraft.
nother means of determining jet thrust is from turbine outlet pressure, (usually from probes ingtalled by the ongine manufacturer). The relationship shown in Figuro 6.4 to determine nozzle total preseure, P_{i}, from turbine outlet total preseure, $P_{t 5}$. may be obtained from engine calibrations in a test chamber. For this relationuhip to be valid flow at the oxhaust nozzle must be choked. Pis is measured with a water-cooled rake. (Lonses in total presaura between atalions 5 and 8 are incurred largely by friction dosses acrose the flameholder).

To determine gioss thrust from turbine outlet total pressure and curies similar to those in Figure 6.4. equation 6.10 may be modified to:

$$
F_{g}=70.727 A_{8} C_{f}\left[1.259 P_{t 5}\left(1-\frac{P_{t 5}-P_{t 8}}{P_{55}}\right)-P_{a}\right] \quad 6.11
$$

6.4 EJECTOR

An exhaust ejector an illustrated in Figure 6.5 may be uned to pump tailpipe cooling air. A properly designed ejector provides adequate cooling with the afterburner operating but does not severely penalize performance at cruleo power eettinge.

Figure 6.5
Typical Convergent Ejector Installation

Secondary flow originates at an intake in the vicinity of the engine air induction system inlet, or may stem from bleed passages located in the induction system subsonic diffuser. The secondary air then passes through the engine compartment, where it serves as a cooling medium, and is subsequently exhausted through the ejector outlet. In addition to the converging ejector shown in Figure 6.5. either cylindrical or converging-diverging ejectors may be employed. With a properly deaigned ejector, flow may be made to approach idealized flow through a converging-diverging nozzle, as described in paragraph 6.5.

The geometry of an ejector is critical for obtaining satisfactory ejector performance. The parameters diameter ratio, D_{p+s} / D_{p}, and epacing ratio, L/Dp, are used to describe ejector geometry. The spacing ratio should not be so large that expansion of the primary flow within the ejector results in impingement on the inner surface of the ejector. Also, the diameter ratio should not be large enough to cause circulation of external air over the ohroud trailing edge, with a resulting reduction in secondary flow rate and an increase in base drag. Typical fired ejector configurations are generally defined by epacing ratios of approximately 0.40 and diameter ratioe of approximately 1.20.

The addition of an ejector to an engine inatallation furthex complicatee the measurement of net thrust. In addition to the measurement of primary thrust, the ram drag and grose thrust of the necondary flow must aleo be considered.

Thie thrust contribution may be stated as:

$$
F_{n_{0 j}}=\frac{W_{g}}{g} V_{8}+\left(F_{88}-P_{a}\right) A_{8}-\int_{\operatorname{sta} 9}^{s}\left(P_{w}-P_{a}\right) d A_{w}-\frac{W_{g}}{g} V_{t} 6.12
$$

where

$$
\begin{aligned}
& F_{n_{e j}}=\text { ejector net thruet } \\
& w_{m}=\text { secondiry welght flow } \\
& v_{\text {e }}=\text { secondary flow speed }
\end{aligned}
$$

$\mathbf{P}_{\mathbf{s}}=$ static pressure of secondary flow at station 8
$\mathbf{P}_{\mathbf{a}}=$ ambient pressure
$\mathbf{A}_{\mathbf{s}}=$ area of ejector at primary nozzle exit
$\mathbf{P}_{\mathbf{w}}=$ ejector wall static pressure
$\mathbf{A}_{\mathbf{w}}=$ projected ejector area between atations 8 and 9
$\mathbf{V}_{\mathbf{t}}=$ airplane true speed

The velocity thrust (firgt term on right side of equation 6.12) may be modified using methods similar to those in Section 6, resulting in equation 6.13:
 6.13

The secondary paseage usualiy contains nozzle actuatore and other equipment 0 that a undform volocity proflle io not obtained and accurate measurement of eccondary total and etatic preesure ie dificult. A high degree of accuracy in total pressure measurement ie not required, however, since the secondary velocity thrust ic amall relative to the primary thrust. A detailed survey of static pressures at atation 8 and axially along the ejector shroud is required in some inatallations. Such. inetallations include those in which over-expansion of the primary jet occure with a resulting ohock wave system within the ejector, and those in which large ejector included angles are encountered. In these inetances pressure forces become quite ignificant. When ejector included angles are omall, the projected area Aw may be emall enough eo that the third term in equation 6.13 may be omitted. With cylindrical ejectore Aw is, of course, rero.

The general equation for determining net thrust for an inetallation with an ejector is

$$
F_{n}=F_{g p}+P_{g} A_{g}\left(\frac{2 Y_{g}-1}{Y_{g}}\right)\left[\left(\frac{P_{t}}{P_{8}} \frac{Y_{A}-1}{Y_{8}}-1\right]+\left(P_{88}-P_{a}\right) A_{s}-\int_{\text {sta } 9}^{\text {ata } 8}\left(P_{w}-P_{a}\right) d A_{w}-\frac{w_{1}}{g} V_{0}\right.
$$

The primary gross thrust. $F_{g_{p}}$ is calculated as described in the preceding paragraph, and the ratio of secific heate in the secondary stroam, Y_{s}, is assumed equal to 1.4.

Instead of the above procedures entailing internal pressure measurements, it may be more desirable to gather data with a swinging rake which samples pressures along cross section of both the primary and accondary jets. Application of the awinging rake to thrust measurement is treated aeparately in paragraph 6.6.

6. 5 CONVERGING-DIVERGING NOZZLE

A gain in thrust may be realized by replacing the more conventional conical nozzle with a converging-diverging nozzle. The increased engine performance is partially offset, however, by increased weight and is obtained at the expense of added controls and mechanical complication. The diverging portion of the nozzle in operational turbojet engines is formed aerodynamically rather thai by physical structure (reference Figure 6.6).

Figure 6.6
Schematic Diagram of Aerodynamic
Converging-Diverging Nozzle

For optimum perforenance throughout the operating range it is necessary to modulate both the primary and secondary nozzle areas and the spacing ratio, L / D_{p}.

In a converging-diverging nozzle, idealized flow is aupersonic and fully expanded at the nozzle exit, and the gross thrust is

$$
F_{g}=\frac{w_{g}}{g} \cdot V_{e}
$$

Pestating equation 5.4 with the Mach number equal to unity at the throat

$$
w_{g t h}=P_{s_{t h}} A_{t h} \sqrt{\mathrm{Y}_{g}}
$$

From the relationa

$$
P_{s_{t h}}=P_{t_{t h}}\left(\frac{2}{Y+1}\right)^{\frac{Y}{Y-I}}
$$

and

$$
\begin{align*}
& \frac{T_{t t_{h}}}{T_{s t h}}=1+\frac{Y-!}{2} M^{2} \\
& w_{g}=P_{t t h}\left(\frac{2}{\gamma+1}\right)^{\frac{Y}{Y-I}} A_{t h} \sqrt{\frac{g}{R T_{t_{t h}}} \frac{(Y+1)}{2}}
\end{align*}
$$

Velocity at the nozzle exit may be expressed as

$$
V_{e}=M_{e} \sqrt{g Y R T_{s_{e}}}
$$

From equation 6.18

$$
V_{e}=\frac{M_{e} \sqrt{g Y R I_{1 e}}}{1+\frac{\gamma-1}{2} M_{e}}
$$

Since the flow is fully expanded at the nozzle exit

$$
M_{e}=\sqrt{\frac{2}{Y-1}\left[\left(\frac{P_{t_{e}}}{P_{a}}\right)^{\frac{v}{V}}-1\right]}
$$

and

$$
\begin{aligned}
V_{e} & =\sqrt{\frac{\frac{2}{Y-1}\left[\left(\frac{P_{t_{e}}}{P_{a}}\right)^{\frac{Y-1}{Y}}-1\right] g Y R T_{t_{e}}}{1+\left[\left(\frac{P_{t_{e}}}{P_{a}}\right) \frac{Y-1}{Y}-1\right]}} \\
& =\sqrt{\frac{2 Y}{Y-1} 8 R T_{t_{e}}\left[1-\left(\frac{P_{a}}{P_{t_{e}}}\right)^{\frac{Y-1}{Y}}\right]}
\end{aligned}
$$

6.23

Substituting equation e 6.19 and 6.23 in equation 6.15 to find grove thrust,

$$
6.24
$$

Since P_{t} and T_{t} are constant in adiabatic flow, $P_{t_{t h}}=P_{t_{e}}$ and $T_{t_{t h}}=T_{t_{e}}$.

$$
F_{g}=P_{t \mathrm{th}}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} A_{t h} \sqrt{\frac{\gamma+1}{\gamma-1}\left[1-\left(\frac{P_{g}}{P_{t t h}}\right) \frac{\gamma-1}{\gamma}\right]}
$$

Forming the ideal gross thrust parameter

$$
\frac{F_{q}}{P_{a} A_{t h}}=\frac{P_{t_{t h}}}{P_{a}}\left(\frac{2}{\gamma+1}\right)^{\frac{Y}{Y-1}} \sqrt{\frac{Y+1}{Y-1}\left[1-\left(\frac{P_{a}}{P_{t}}\right)^{\frac{Y-1}{Y}}\right]}
$$

Equation 6. 2 ó is presented in graphical form in Chart 9. 2!
It has been pointed out previougly that in a converging nozzle the Slow is subcritical al nozzip pressure ratios lesa lhan apprcximatm! 1.85. At higher presgure ratios the convergent exhaugt nozole is choked and operates with a supercritiral pressure ratin luthes: in the static preseure at the exil is larger than atmospheris prowitit. that if, the gases are underexpanded. In a converging-diverging nompe complete expansion occurs with idealized flow, resulting in a snmewhat higher thrust when the flow is aupercritical. This difference in thrial is shown in Figure 6.7. It can be seen from this figure that irisubamic. flight (maximum preasure ration of the order of 4) the gain in thrust is too alight to warrant inotallation of a converging-diverging nozzie. In supersonic flight, howaver, where the pressure ratios become much higher, a abetanial increase in thrust is possible.

Figure 6.7
Thearelical Loss in Thrust Due to Underexpansion

6. 6 SWINriING RAKE

Stationary air-cooled probes located in the nozzle exit have been employed with adequate results. Probes of this sort are subject to damage from hign temperatures, however. Swinging rakes may provide the bet means for measuring the jet thrust of more advanced engines, such as those with afterburners and ejectors. Rakes of this design are normally stowed outside the jet exhaust where they are cooled by freestream air. They are driven acrose the tailpipe when data is being recorded in aboul 4 or 5 seconds. so that prolonged exposure to the hot jet is avoided and a cooling syatem is not required. The thrust contribution of an ejector together with the thruet created by the basic engine may be computed from data obtained with a swinging rake. Also, better mean values of pressure are obtained with a awinging rake than with a fixed probe, although preseures are still measured along only one cross section.

The jet of high performance engine expande rapidly, particularly at high power settinge, resulting in Mach numbers which are well supereonic downetream of the nozzle. Hence, it ie desirable to measure both total and static pressures at a common point in a plane as near the nozzle exit as possible. Several different designe have been utilized, although none of them eatisfy thie condition exactly. These designe include installations which oense both total and static pressures on the same probe, and those which cense pressures on different probes but in the oame plane (reference Figure 6.8).

Figure 6.8
Various Designs of Swinging Rakes

In designs similar to that shown in Figure 6.8 (a), the probes should be as close as possible without creating excessive aerodynamic interference. Another type of installation which is perhaps the best compromise for obtaining both total and static pressures at the same point makes use of a pitot-static probe with static pressure measured on a conical surface.

6.6.1 Sources of Error:

Little information is available on the flow angularities which exist at the nozzle exit. Flow angularities of approximately 15 to 20 degrees due to swirl of the primary jet should be expected based on NACA Research Memorandum E57H28, "Experimental Results of an Investigation of Two Methods of InFlight Thrust Measurement Applicable to Afterburning Turbojet Engines with Ejectors', by Harry E. Bloomer. No significant effect on total pressure results from flow angles of this magnitude with an adequately designed pilot tube. Static pressures are subject to quite substantial errors, however, as shown by Figure 6.9 extracted from RM E57H28.

As is pointed out in this memorandum, it would sectu that large errors in thrust measurement might result with guperaunic flow since the static pressure is used to correct the total presule for bow shock. Errors in static pressure are not as serious ab might be anticipated, as demonatrated in Figure 6.10 which shows variations ingrose thrust from errors in static pressure.

Figure 6.10
Error in $\mathrm{F}_{\mathrm{g}} / \mathrm{A}$ ve Nozzle Prosenre Ratio for Assumed Errors in Static Pressure

Exact information on yaw angles cannot be expected for flight teat inctallations. Approximate corrections can be made, however, to bring atatic presaree to within asy $t 10$ percent of their true values and keep the error in groes thriast caused by inaccuracies
in static pressure to within ± 1 percent.
Constant values of Y. (1.33 for non-afterburning and 1.28 for afterburning), may be used for the entire swing without introducing significant errors. Errors in total pressure may be introduced by lag, particular during the portion of the traverse where pressure gradients are large. Lag errors may be minimized by averaging pressures taken during traverses in opposite directions. The accurate determination of probe position, from which nozzie area is found, is necessary for achieving satisfactory accuracies in thrust computation. Measurement of probe position is made more difficult by possible bending of the rake body from aerodynamic forces and thermal stresses.

6.6.2 Calculation of Crone Thrust:

The following equation may be used to compute thrust with a swinging rake:

$$
F_{g}=\int\left\{P_{29}\left[\begin{array}{lll}
\frac{2 Y}{Y-Y} & \left(\frac{P_{19}}{P_{89}}\right)^{\frac{Y-1}{Y}}-\frac{Y+1}{Y-1}
\end{array}\right]-P_{a}\right\} \text { dAg } 6.27
$$

Static pressured are first corrected for yaw angle.
Indicated total pressures are used directly when the flow is subsonic. With supersonic flow the total pressure behind a detached shock is sensed. In this case Mach number may be computed from the Rayleigh supersonic plot formula (reference Chart 9.22).

$$
P_{\ell}=\frac{\left(\frac{Y+1}{P_{1}} M^{2}\right)^{\frac{Y}{M}}}{\left(\frac{2 Y}{\gamma+1} M^{2} \cdot \frac{Y-1}{\gamma+1}\right)^{\gamma-1}}
$$

The isentropic relation,

$$
\frac{P_{t g}}{P_{s 9}}=\left(1+\frac{Y-1}{2} M^{2}\right)^{\frac{Y}{Y-1}}
$$

may be used to determine Ptolfs.
The area included by the probe traverse is computed from a calibration of the angular displacement of the probe from the vertical centerline versus distance from the center of the nozzle. Pressures may then be ploted as illustratedin Figure 6.11.

Figure 6.11
Typical Total and Stetic Preaeure Distributions
from Swinging Rake

Growa thruat may be compuied from equation 6.27 using a mechanical integration procedure, by summing values of ΔF_{g} calculated from avorage $P_{t g}$ and average P_{s} over ΔA (reference Figure 6.11). This procedure involves rather lengthy calculatione and is not adaptable to tent programe where large quantites of data are processed. Here, a machine solution which makes use of curve fits of total and static pressure diatributions is virtually easential.

SECTION 7

WATER INJECTION

7.1 INTRODUCTION

Thrust augmentation may be obtained by injecting water or other liquids into the airstream anywhere from the compressor inlet to the rear of the burner. A mixture of water and methyl alcohol ie frequently used. The alcohol prevents frecaing and also provides additional heating which compensatea for the heat lost through evaporation of the wateralcohol mixture. The additional heat to upplied when the alcohol burns. Water-alcohol is usually injected in the compreseor inlet, in the combustion chamber or at both locations aimultaneously. An increase in thruet from about 10 to 25 percent can be obtained, depending on the sype of installation, amount of water iajected and the flight conditions. This increase in thruat in achieved at very high total liquid flow rates and can be smployed for only short periods of time. Consequently, the use of water injection is generally limited to improving take-off performance.

Compared to afierburaing, water injection is leas efficient and more limited in the augmentation ratios which can be obtained. Water injection does have the advantage of simplicity of installation and operation and does not entail as large an installation woight penalty as afterburning. Also, a performance penalty is not incurred during crudse an is the case with an afterburner installation. For relatively amall short duration thrust increases, water injection may, therefore, be the more auitable of the two syoteme.

7. 2 INJECTION IN THE COMPRESSOR INLET

Water injection in the compressor inlet has the advantage that a greater amount of thrust augmentation is produced per pound of liquid injected. Increases in thrust are produced from the three following effects:

1. The mase flow is increased. Some of this increase is due to the mass of the injected liquid, and some from a reduction in compressor inlet temperature. It is theoretically poseible to cool the inlet air to the saturation temperature before it enters the compressor. The air is not cooled to that extent in practice, however, eince the rate of evaporation is limited principally by apray droplet size and ajr turbulence. As the spray passoe into the compressor, further cooling is obtained by additional evaporation during the mechanical compresion procese.
2. $i^{2} 3$ power required to operate the compreseor at a conetant presesure ratio is decreased. This is also ccused by the lowered inlot temperature which decreases the required change in enthelpy necenalyy to perform a given amount of compreseion.
3. A higher preseure ratio from the compreceor is obtained. This increased preseure ratio to attributed to the increased denalty of the gases flowing through the compreseor.
Further, the decrease in compressor diecharge temperature tende to be reflected in a lower exhaugt gae temperature. Although the lowered compresaor powar Input requirement tende to increace exchaust gae temperaturn, the net effect is generally to produce a lowar temperature. Hence, more fuel, whith higher mase flows, is added to the combustion chamber in order to retaln the ame exhauet gae temperature. These effecte combine to increaen the thruat output.

7.3 COMEUSTION CHAMBER INJECTION

Thruat may be increased by injocting water or water-alcohol mixture into the combuetion chamber. The turbiae inlet preseure io increased thereby, and a higher total mase flow resulte. The total mase flow tende to be reduced, however, due to changing the equillbrium runalag conditions of the compressor with the addition of
water injection. The compressor pressure ratio is increased while the compressor rotative speed remaina constant, so that the airflow is reduced. Hence, the amount of augmentation is dependent on the operating characteristics of the compressor. (Sce Figure 7.1).

Figure 7.1
Simplified Compressor Performance. Chart

At equilibrium, the compressor flow is lowor, but the turbine and nozzle exit flow is higher as is the nozzle pressure ratio and consequently tirust. Compressor surge will limit the amount of liquid which can be injected into the combustion chamber. Practical increases in thrust are limited for this reason to about 15 to 20 percent.

SECTION 8 DATA REDUCTION
8. 1 CONVERSION OF ESTIMATED PERFORMANCE CURVES TO CORRECTION PLOT (F_{n} / δ_{2} versus $N / \sqrt{\theta_{a}}$)

1. Mach number desired
2. $P_{t_{2}} / P_{t_{0}}$ from plot of $P_{t_{2}} / P_{0}$ versus M
3. $P_{t_{0}} / P_{a}=\left(1+.2 M^{2}\right)^{3.5}$
4. $P_{t_{2}} / P_{a}, \quad$ (2) \times (3)
5. N/ $\sqrt{\theta}$ a, select values to cover the flight range
6. $\left(\mathrm{T}_{\mathrm{t}_{2}} / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2}=\left(1+.2 \mathrm{M}^{2}\right)^{1 / 2}$
7. $N /{\sqrt{\theta_{t}}}^{\prime},(5) /(6)$
8. $\mathrm{Fg}^{\prime 6} \mathrm{t}_{2}$ from engine manufacturer'e estimated grose thrust curves at (4) and (7)
9. $w_{a}{\sqrt{\theta_{t}}}_{2} / \delta_{t 2}$ from engine manufacturer's estimated airflow curves at (4) and (7)
10. F_{e} / δ_{t}, (9) $\times(1) \times 34.73 /(6)$
11. $F_{n} / \delta_{t_{2}}(8)-(10)$
12. Plot (11) veraus (5) for Mach numbers selected in (1)
13. 2 DETERMINATION OF EXHAUST GAS TEMPERATURE, RPM AND NET THRUST CORRECTIONS FOR OFF-STANDARD EXHAUST GAS TEMPERATURE
14. $\mathrm{T}_{\mathbf{t} 5_{t}}$, test axheust gas tomperature
15. \mathbf{N}_{t} teat ongine apeed
16. Ne etardard ongine epoed
17. Oate Tat/TasL
18. Oag' Tae/TasL
19. $T_{t_{t}} / \theta_{a t},(1) /(4)$
20. $N_{t} / \sqrt{\theta_{a t}},(2) / \sqrt{(4)}$
21. $N_{s} / \sqrt{\theta_{a s}}$ (3) $/ \sqrt{(5)}$
22. Tt5max maximum allowable exhaust gas temperature $^{\text {mat }}$
23. $I_{t 5_{m a x}} / \theta_{a s}$, corrected maximum allowable exhaust gas temperature, (9)/(5)
24. $T_{t 5_{s}} / \theta_{a s}$, standard corrected exhaust gas temperature corresponding to (8) from plot of (6) and (7) at (8)

Case I: (11) less than (10)
12. $\mathrm{T}_{\mathrm{t}_{5}}$, (11) \times (5)
13. $\Delta F_{n} / \delta_{t_{2}}$ from plot of $F_{n} / \delta_{t_{2}}$ versus $N / \sqrt{\theta_{a}}$ at (7) and (8) Case II: (11) greater than (10)
14. ($\left.N / \sqrt{\theta_{a s}}\right)_{\text {max }}$, corrected rpm corresponding to (10) from plot of (6) and (7) at (10)
15. $N_{\text {max }}$ standard maximum engine speed, (14) x (5)
16. $\Delta F_{n} / \delta_{t_{2}}$ from plot of $F_{n} / \delta_{t 2}$ versus $N / \sqrt{\theta_{a t}}(14)$ and (7)

8. 3 DETERMINATION OF NOZZLE THRUST COEFFICIENT

1. Fgactual from the mechanical thrust measuring equipment
2. As from measurements of the exhaust nozzle
3. Pa, static pressure to which the nozzle is discharging, from barometer or altimeter
4. P_{t}, instrument corrected total pressure from probe(s) located in exhaust nozzle
5. $P_{t_{8}} / P_{a,}$ nozzle pressure ratio, (4)/(3)
6. ($\left.F_{g} / A_{8} P_{a}\right)_{\text {the }} o^{\prime}$ theoretical $g r o s s$ thrust parameter from Chart 9.17 or 9.18 and (5)
7. ($\left.\mathrm{Fg}_{\mathrm{g}} / \mathrm{A}_{8} \mathrm{~Pa}_{\mathrm{a}}\right)_{\text {actual }}(1) /(2)(3)$
8. Cf, nozzle thrust coefficient, (7)/(6)
9. Plot (8) veraus (5)

Chart 9.1 RELATION BETWEEN TOTAL PRESSURE RECOVERY AND RAM EFFICIENCY
Total Pretsura Recovery, $\mathrm{Pt}_{2} / \mathrm{Pa}_{\mathrm{a}}$

Chart 9.2 TOTAL PRESSURE RECOVERY FOR INLETS WITH SHARP LIPS

3. 69

Chat 9.4 (a) PRES8URE RECOVERY OF BOUNDARY LAYER AIR ADMATTED INTO SLDE - INLET INSTALLATION TYRBULENT FLOW

Chart $9.4(\mathrm{~b})$ PRESSURE RECOVERY OF BOUNDARY LATER AIR ADMITTED INTO SIDE-LNLET INSTALLATION - LAMINAR FLOW

Chart 9.5 TOTAL MOMENTUM RATIO FOR VARIOUS SCOOP HEIGHT TO BOUNDARY LAYER RATIOS

Chart $9.8 M_{0}$ va $P_{\frac{1}{2}}^{\prime} / P_{t_{0}} \quad$ NORMAL SFIOCK CONDITIONS, $\gamma=1.4$

Chart 9.9 TOTAL PRESSURE RATIOS FOR 2 - DIMENSIONAL 2-SHOCK COMPRESSION

Chart 9.10 TOTAL-PRESSURE RATIOS FOR 2 DIMENSIONAL 3 - SHOCK COMPRESSION

Chart 9.11 TOTAL PRESSURE RA'TIOS FOR CONICAL 2-SHOCK COMPRESSION

Chart 9.12 MACH NUMBER CHANGE THROUGH AN OBLIQUE SHOCK FOR A TWO DLMENSIONAL WEDGE

Chart 9.13 TOTAL PRESSURE RATIO ACROSS AN OBLIQUE SHOCK FOR A TWO DIMENSIONAL WEDGE

THEORETICAL ADDITIVE - DRAG CUEFFICIENTS FOR OPEN - NOSED INLETS
Chart 9.14

Chart 9.15 THEORETICAL ADDITIVE-DRAG COEFFICIENTS FOR ANNULAR NOSE INLETS WITH CONICAL FLOW AT THE INLET

(c) Cone half-angle 25°
(d) Cone half-angle 30

Chart 9.16 CHANGEIN COWL, DRAG COEFEICIFNT WITHA C!IANGE IN MASS FLOW RATIO AS A EUNCTION UF MA(IH TIJMRER

3-86

P_{t} / P_{a}
NOZZLE PRESSURE RATIO,

Chart 9.19 GROSS THRUST PARAMETER VERSUS NOZZLE PRESSURE RA'TIO WITH SUBCRITICAL OPERATION

GROSS THRUST PARAMETER VERSUS NO EZLE PRESSURE RATIO WITHY SUPERCRITICAL OPERATION - CONVERGING NOZZLE

Chart 9.20 GROSS THRUST PARAMETER VERSUS NOZZLE PRESSURE RATIO WITH SUPERCRITICAL OPERATION - CONVERGING NOZZLE
-

NOZ2LE PRESSURE RATIO, $P_{\mathbf{t}} / P_{a}$
GROSS TERUST PARAMETER VERSUS NOZZLE PRFSSURE RATIO WITH SUPERGRITICAL OPERATION - CONVERGING NOZZLE

NOZZL5 PRFSSURE RATIO, P/P
Chart 9.20
GROSS THRUST PARAMEIER VERSUS NOZZLE PRESSURE RATIO WITH
CONVERGING-DIVERGING NOZZLE SUPERCRITICAL OPERATION Chart 9.21
 NOZZLE PRESSURERATIO, $P_{t} / \mathbf{P}_{\mathbf{a}}$
Chart 9.21

Chart 9.21 GROSS THRUST PARAMETER VERSUS NOZZLE PRESSURE RATIO WITH SUPERCRITICAL OPERATION -CONVERGING-DIVERGING NOZZLE

Chart 9.22 P'/f, versus mach (rayleich supersonic pitot FORMULA)

Chart 9.22 $P_{t}^{\prime} / P^{\prime}$ VERSUS MACH (RAYIEIGH SUPERSONIC PITOT FORMULA)

Clurt 9:22 P_{t}^{\prime} / P VERSUSMACH (RAYLEIGH SUPERSONIC
PITOT FORMULA)

CHAPTER FOUR

LEVEL FLIGHT PERFORMANCE

SECTION 4.1

Pengity Altitude and Preseure Altitude Plight Trat Mothode

Aircraft level flight performanoe analyin is the procese of determining atadard day level ilight characterietion from data obtalned during nonetandard conditiona. Until the advent of blet apeed airoraft and the acoompanying campreasibility effeota mont ilight test data were reduoed by what la reforred to an the "Donsity Altitude" mothod. With jot powered aircraft cam the noceselty of atandardieing data for what night be oalled conatant compressibility oonaltions, thus avoiding ocmpresibility oorreotions. This lattor tjpe of data reduotion is called the "Preseure Altitnde" mothod.

The denalty altitude mothod of Plight test data reduotion has been ueed and, In may oasen, in etill ueed in the apeed rango whore the agmumption of oonetant drag for conotent true apeod and deacity altitude is valid. However, where if feote of coupreaibility are not nagigible thie mothod vill reault in orroneous otandard day data. The preacure altitude mothod is baced on the congept of mintalaing a conetast preasure altitude and indioated air apeod and correcting a ta caly for temperature to obtaln rtanderd day performanoe. With theee 1domticel toet and otandand day indionted air aroede the teent and otandard day
 Jach rember equation (2.23) in term of q_{0} and $P_{\text {a }}$.

It in ehom in aorodmanio the rey thit total drag in a funotion only of Kach maber 15 wight and altitude are illajd. (Rojnolde muber effeote are corgally igmofed in flight tant vork.) These faote are tha bacis for tho arpiloity and effeotivoness of the proasure altitude zothod of flight data reduotica. Taine it, the performanoe ongineor mod mate calr tempernture ocervotion to his test day data, and ocmpreapibility offoots are automatioally beld oongtant.

An a genprel rale the promeurp altitude mothod is applied to both reciprooming and 90 engine airoraft. For, oven in tho low aped range, thin method etplifies date reduotion prooedures ta all departmonte of airoraft performance. In the oace of reoiproonting engin bilozaft thore is one oxooption to the poenure altitede method. In this oxooption power paramoter (PIN) ia plotted acplogt a apeod parameter (VIM) to obtain a elngle, etandard day, weight correoted, rea-lavi, porer-required polar for all 10 vol plight data. This PINVIM poiar vill not be relid in the congreusibility oped range.

Aerodymamic Forces and Thelr Relation to
 Engine Power and Eropuleive Thruet

Tho aerodynamio forces acting on an alrfoll are aseumed to be funotions of ite eize, angle of attack, apeed, and atmoephorio conditions (tomporature, pressure, and vieoosity of the air through which it is flying). The two primary forces acting on the unaccolerating airoraft are called the lift foroe and the drag force, and those may bo defined by generalized nandimamional equations:

```
LIft Foroe - P (angle of attack, sizo, speed, tamperature,
    proseure, viecosity)
Drag Force - I (anglo of attack, sito, apoed, temperature,
    preseure, viscomity)
```

Letting the lift force oqual the alroraft eroas voight, the drag foroe may be redefined by uge of the bbove equationg.

Drag Force - 1 (voight, eize, epeed, temperature, presoure,
viecoolty)

By the methode of dimenalonal analyais equation 4.203 may be tranoformed to the forme:

$$
\frac{D_{2}}{P_{a}}=I\left(\frac{H}{P_{a}} \quad M, R_{\bullet}\right)
$$

(In thie form the oongtant airaraft alse faotor is antted)
where:
D = total alroraft drag
$P_{A}=$ atmoephoric presture
W - alroraft groes voight
M - MaOh number
Re - Roynolde muber
In moet filght test alporaft analyio the mall variation of data with Boynolde number are naglooted.

By longthy amiytion mothode it is poesible to devolop a phyoical equation that vill approcimately defino tho drag forow.

$$
\begin{equation*}
D=C \text { Cas } \tag{4.205}
\end{equation*}
$$

The total drag ocofiloiont, C_{D}; in furthor defined by analytioni mothode and equale the oum of the proilie and induoed drag ocefficiente.

$$
\begin{equation*}
C_{D}-C_{D P}+C_{D P} \tag{4.206}
\end{equation*}
$$

AM1R 6273

With thie equation 4.205 becomes

$$
\begin{equation*}
D=C_{D P}(q 3)+C_{D 1}(q s) \tag{4.207}
\end{equation*}
$$

The induced drag coeffioient, $C_{D 1}$ is further dofined by analjtioal mothoda

$$
\begin{equation*}
C_{D 1}=\frac{c_{L}^{2}}{\pi R_{e}^{2}} \tag{4.208}
\end{equation*}
$$

And the lift cooffiolent C_{L} is definod by analfical mothode asi

$$
\begin{equation*}
C_{\mathcal{L}}=\frac{V}{Q J} \tag{4.209}
\end{equation*}
$$

Substituting these lant two equationg in 4.207, s Plnal amalytionl expreacion for the drag force is obtained.

$$
\begin{equation*}
D=C_{D p}(q s)+\frac{H^{2}}{\operatorname{TH}^{0}(\Omega 8)} \tag{4.210}
\end{equation*}
$$

where:

$$
\begin{aligned}
& q=\frac{1}{2} \rho \gamma^{2}=0.7{P_{0} H^{2}}^{2} \\
& \text { W a alroraft groeg wight } \\
& \text { A. Fing aopeot ratio } \\
& 8 \text { - Ting area } \\
& \text { - - 2a8 ef1010nos fector }=\frac{C_{L}^{2}}{\left(C_{D}-O_{D}\right) \pi R}
\end{aligned}
$$

 Mach meper and lift oonficiont, romaning oonotant mitil ocmpecelbility of-
 appeaiably afleotod by ahangen in C_{I}. It ahould be noted thet ite velidity and voifureen of all airoraft performano paranotern dopen on the vellalty of the prevalling acmotion ooncerning CVe.

Acerving CIP to remain ocnetant for the epeed range of mopt reaiprocating engin airaraft, eeveral funotional modifioation of equition 4.210 my be derirod in terriv of epeed, Mah muber, thraet horeppomer, crops vilght, and atrompherio condition.

$$
\begin{equation*}
\mathrm{THP}=\mathrm{C}_{\mathrm{DP}} \sigma V^{3} S k_{1}+\frac{W^{2} k_{2}}{\sigma V_{2}^{2}} \tag{4.211}
\end{equation*}
$$

 veleft

$$
\begin{equation*}
\text { wipro }=x_{2} C_{D}\left(\sigma v^{2}\right)^{3 / 2} 8+\frac{w^{2}}{\sqrt{\sigma} t^{2}} \tag{4.212}
\end{equation*}
$$

In this form (THP $\sqrt{\sigma}$) in a function of $\left(\sigma v^{2}\right)$ or V_{0}^{2} and eroes velght.

$$
\begin{equation*}
\frac{\operatorname{LRP} \sqrt{\sigma}}{\alpha J / 2}=\operatorname{cosp}_{1}\left(\frac{\sigma v^{2}}{w}\right)^{3 / 2} 3+\frac{k_{2}}{\left(\sqrt{\frac{\sigma v^{2}}{W}}\right)^{b^{2} 0}} \tag{4.213}
\end{equation*}
$$

In this form (TRP $\sqrt{\sigma} / w^{3 / 2}$) is a function only of $\left(\sigma \nabla^{2} / W\right)$

$$
\begin{equation*}
\frac{T H P}{P_{a} \sqrt{T_{a}}}=c_{D P} M^{3} s k 5+\left(\frac{W}{P_{a}}\right)^{2} \quad \frac{k_{4}}{M_{a}^{2}{ }^{2}} \tag{4.214}
\end{equation*}
$$

In thie form (THP/ $P_{a} \sqrt{T_{a}}$) is a function of Mach number and ($\mathrm{W} / \mathrm{P}_{\mathrm{a}}$)

$$
\begin{equation*}
\frac{D}{P_{a}}=k_{5} C_{D P} M^{2} s+\left(\frac{H}{P_{a}}\right)^{2} \quad \frac{k_{6}}{M^{2} b^{2} 0} \tag{4.215}
\end{equation*}
$$

In this form ($\mathrm{D} / \mathrm{P}_{\mathrm{a}}$) is a function of Mach number and ($\mathrm{W} / \mathrm{P}_{\mathrm{a}}$). These last two oquations are both valid in the compreselble opeed range because M and $\left(W / P_{a}\right)$ dofine C_{D}. In the incompreselble range C_{DP} is constant for all Mach numbera and $\left(W / P_{a}\right)$'s; in the compresaible range $C_{p p}$ ae a function of M mat be plotted for separate (W/P) parameters. It should be noted that at a conotant Mach number an increasing value of ($\mathrm{W} / \mathrm{P}_{\mathrm{a}}$) oorresponds to an inorease in C_{L}. It ehould also be noted that equation 4.204 , derived by dimonional analysie, varifiee 4.215.

The foliowing notetion appliee to equationg 4. 211.throush 4.213.

```
        THP \(=(D x Y) / 326\), or BRPX \(\eta_{P}\), \(=\) thruat horeopower
            \(\eta_{p}\) - Propeller offioioncy
            \(\sigma=\rho / \rho_{S L},=9.625 P_{a} / T_{a}\), denoity ratio
        \(V=\) Trwo opeod, frote
        s. wing ares, \(\mathrm{ft}^{2}\)
        \(\mathrm{H}=\mathrm{lbg}\), grose veight
    \(\mathrm{b}^{2}\) - It \({ }^{2}\), Rxs, wing apaa
        - Alrplane officiency factor
\(V \sqrt{\sigma}=V_{\theta}=\) mote, equivalont apeod
    \(P_{\mathrm{a}}\) - 1nohes Eg, atmonpherio prosaure
    \(\mathrm{T}_{\mathrm{a}}^{\mathrm{a}}\) - \({ }^{\mathrm{T}}\) Kivin, atmosphorio tomporature
        \(M=\) Nach number, \(V / 38.94 \sqrt{T_{a}}\), or \(\sqrt{4 / .7 P_{a}}\)
        \(D=1 b_{A}\) dras or propulaive thrust, \(P_{A}\)
    \(k_{1}=1.0414 \times 10^{-5}\)
    \(k_{2}-.28820\)
    \(k_{3}=5.9205\)
    \(k_{k_{4}}=7.6885 \times 10^{-4}\)
    \(k_{5}=49.5089\)
    \(k_{6}=6.4293 \times 10^{-4}\)
```

Graphically equationa 4.210 through 4.215 all take the same genoral parabollo form as ohown in Figuro 4.21. Cortain uacful infumation conoerning oaioh type of plot is noted.

Frove 4.21
Palar Foren for Varioun Alurart Ferformace Paramoters.

Spead Power Curveg - Reciprocating Engine Alrcraft
Equation 4.21418 the basis for the preseme altitude method of level flight data reduction. If a series of points ie flow at a congtant preanure altitude and woight, Mach number mas bo plotted agolnot THP/ $\sqrt{\mathrm{T}_{\mathrm{a}}}$.

$$
\frac{T H P}{\sqrt{T_{s}}=f(M) \quad l} \begin{align*}
& \text { veight constant } \tag{M}\\
& \text { preseure constant }
\end{align*}
$$

Since engino brake horeepower is the de日ired power oriteria, the difforence between brake horsepover and thrust horsepower must be considered.

THP = propeller officioncy $\left(\eta_{p}\right) \times$ BHP
The actual determination of the propelior officiency is not generally required, because ferformance 18 tc be measured in terme of engine ohaft pover. In order to inaure that the performance parameters are valld on a otandard day or a teat day, it is necesaary to consider the pariation of propeller efficioncy between tro pointa flown at the oame Mach number and preseure aititule but at differont tomperaturea. Experionce hao show that this variaition in propellor officieno is usually negligible, so equation 4.301 is valid in terms of brake horsepower for a constant woight and a constant proseure altitude.

$$
\begin{equation*}
\frac{B H P}{\sqrt{I_{8}}}=I(M) \tag{4.308}
\end{equation*}
$$

For convenience in plotting the horsepover paramoter is vritton, BHP $_{t}$ Viad $_{N_{a}}$ $V_{r_{a t}}$, where $T_{a g}$ is the standard day tomperature at the proseure altitude phder consideration. This notation has a major value in that the radioal, $\sqrt{T_{a d} / T_{a t},}$ equale unity on a standard day and the plot showe directly tho otandard day horsepower required to produce any given Mach number.

Another form of preasure altitudo plot may be derivod by considering Mach nuber ao a function of calibrated apeed $\left(V_{c}\right)$ and prosaure altitude (H_{c}) as defined in Chapter Ons.

$$
\begin{equation*}
\operatorname{BEP} \sqrt{\frac{T_{a t}}{T_{a t}}}=f\left(v_{c}\right) \tag{4.303}
\end{equation*}
$$

velght conetant atmoapheric preseure congtant
Tplaci plota of the norsepower paramoter, BEP $\sqrt{T_{a s} / T_{a t}}$, va M and ∇_{c} are ehom in Figure 4.31.

From plots ounh as thoe in Figure 4.31 A \& B the graphe of otandard-day brake horsepover ve true opsed may be drawn by elmply oconvertine ∇_{0} and H_{0}, ar M and $T_{a s}$ for H_{0}, into standard-day true opeode. In faot, thie otandard true eped may be computed and plotted ve BBP $x \sqrt{I_{a}} \sqrt{T_{a t}}$ as in Figur 4.31 without making the V_{0} or M plot nhown. It ohould be somedbered that the airoraft veight
has been asaumed conotant. Actually each level fllght at cangant altltude will bave to be at a different welght and will have to be coresoted to a conatant veight.

Cross plota of the Bif vg V_{i} plote and engine data at the various altitudes ara made for report presentation to ehow atandaid day true erpeed altitude plote for nommal rated power and for military power as ohohn in figure 4.32.

P1gure 4.31
Typical Presesure Altitude Speed-Pover
Plots for Lavel Flight

SECTION 4.4

Volpht Correotiong for Speed Powar Data
 - Rociprocating Engine Alrcraft

The epeed power relationshipe would be comrietely deilned if all teate conld be run at desired welght at congtant prossure ; 's indes; hownver, varied teai oonditions and fuel canoumptions generally maku chis imposelble. A weight correotion it uausily made to all dats at a givon preseure altitude to make it reprosent a sixed veight. The atandard veight is usually defined as the velght the alroraft would have if it gtarted at its normal take-off groes woight and climbed to the specified altitude at best olimb power and epoed settings. The oorrection is made by considering the isolated effect of a change of weight on $\mathrm{BEP}_{t} \sqrt[T_{a g} / F_{a t}]{ }$ at a constant Mach number or ∇_{0} and preseure altitude.
since the oorrection 1s to be made at a comptant Maob number and vili inFolve only amall ohanges in angle of attack, CDP will be assumed oongtant. Uaing equation 4.214 with CDP hold constant;

$$
\begin{equation*}
\Delta\left(\frac{\text { TIPP }}{P_{a} V_{M} V_{a}^{2}}\right)=\Delta\left(\frac{W^{2} r_{4}}{P_{a}^{2} M^{2}}\right) \tag{4.401}
\end{equation*}
$$

Converting to brabe horeeporar and a oonstant preasure altitude, tomperature, and Mach minber

$$
\begin{equation*}
\Delta \operatorname{BRP} \sqrt{\frac{P_{a t}}{T_{a t}}} \cdot \frac{\Delta H^{2} \operatorname{lom}_{4} V_{I_{a s}}}{\eta_{p} P_{a} M b^{2}} \tag{4.402}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \triangle B E \text { BiP }_{0}=\text { BHP }_{t} \\
& \Delta W=W_{8}-W_{t} \\
& \frac{1}{n}=7.6885^{2} \times 10^{-4} \\
& \text { Ve - } 0.83 \text {, average value } \\
& \text { - 0.77, average value. }
\end{aligned}
$$

The valua of propellor offiolency and airplano offiolenoy within normal iljing apeede of propeller driven airoraft aro approximatoly constant. At opeode loes than 30% greater than stall opeod, difforences botween test welght and etandard wight ohould be maintainod leas than 20% mieas detailed information regardiag "nc" and "o" is avallablo. For general vork a propellor of flotenoy of $.83^{\text {a }}$ and an airplane effioioncy of .77 are aesured. Fromequation 4.409 ,CEART 4.41 at the ond of this ohapter has been made giving $\triangle B E P \sqrt{T_{a d}} / P_{a t}$ from etandard veight, obange in voight, ving apan, tegt Mah number, and proseuro altitude. Lotioe hould be tabon that the $\triangle B H P \sqrt{P_{a \rho} / T_{a t}}$ is the total ohange, whle upeed-power eraph upually presont boreopover/engino.

DATA REDUCTIOR OUTLINE (4.41)
For Determining Welgnt-Corrected
Standard BHP $\mathrm{Vo}_{\mathrm{t}} \mathrm{V}_{t}$ and H_{c}

(1)	v_{1}	knots
(2)	ΔV_{10}	knots
(3)	W_{2}	160
(4)	$\Delta Y_{p o}$	knots
(5)	V_{0}	knota
(6)	H_{1}	foet
(7)	$\Delta \mathrm{H}_{10}$	foet
(8)	$\Delta \mathrm{H}_{\mathrm{po}}$	foet
(9)	\mathbf{H}_{0}	Soot
(10)	\bar{M}^{0}	
(12)	t_{1}	${ }^{\circ} \mathrm{C}$
(12)	Δt_{10}	${ }^{\circ} \mathrm{C}$
(23)	t_{10}	${ }^{\bullet} \mathrm{C}$
(24)	$t_{\text {at }}$	${ }^{\bullet} \mathrm{C}$
(15)	$\mathrm{tas}_{\text {as }}$	${ }^{\circ} \mathrm{C}$
$\binom{16)}{17}$	$\begin{gathered} \sqrt{\boldsymbol{r}_{\mathrm{BR}} / \mathrm{I}} \\ \mathrm{BiP}_{\mathrm{t}} \end{gathered}$	
(18)	BRP_{t}	Tat
(19)	W_{0}	2bis
(20)	ΔH	$1 \mathrm{lb}^{\text {c }}$
(21)	$\triangle B E P_{t}$	$\mathrm{O}_{\text {/ }}$
$\begin{aligned} & (22) \\ & (23)^{3} \end{aligned}$	$\begin{aligned} & B P_{t v} \\ & \nabla_{t e} \end{aligned}$	${ }^{1} T_{a t}$ knote

(24) Plot (22) ve (23) or (5) or (10), and (9) as shors if Pigure 4.31.

Wotes the etandard dey, weight-oorreoted BBP (22) requires occrrotione to carburotor alr tomperature, manifold prosoure, turbo rpm, and exhaust baok presemre. If the partioular opeed-pover point is at full troottle the etandard powor (22) maj. not be obtainable and a epead oorreotion will be in order. These engine oandition correotione are determined by the mothode of Chapter Two.

SECTIOR 4.5
 Gonflauration Chenge Correctiong for Bpeed Pover pata

The preceding eootione doveloped a mothod for deternining opeod ve power at epsoified voighta, altitudeo, and fixed zonfigurationa. From thia data goraralleations mut be made to allom computatione of performnnoe at all poasible welgites altitudea, and conifgurationg. For reoiprooating ongine power alroraft theae ocmputation are all made on the baid of inocmpreseible flow thoory.

The firgt requirament is for information regarding the obanges in power reguired for a $\boldsymbol{f}^{1 \text { ten }}$ speod ohange oauced by minor changes in oonfiguration ouch ag opening or olosing covi flape, oil ooolors, intercoolers, oto. To prosent thic information iram minimum ilight teat vork, the aseumption is made that, at a given opeed, a minor ohange in oonifguration will not ohange the ooelfioiont of Induoed dres ($O_{D L}$).
thon
Propile Drag - $C_{\text {DP }} \frac{f}{2} V_{t}^{2} g$
Δ Prosile Drag - Δ Turust
and
Δ सHP $-k S \Delta C_{D P} \sigma \nabla_{t}^{3}$
ω

where:
 of an inorengnt of Δ Cip
t - 1.0414×10^{-5}

F. true alr apoed, knote

If $V_{t} \sqrt{F}$ and $C_{D I}$ axe held oonstant, any ohange in dHPVF Nill be a funotion of the ohange in CDp. Within a anil range of Vior Propeller Mifioienoy, 久p, re Fine oongtant and ($\sqrt{\theta} T H P=\sqrt{\sigma} B H P \eta_{p}$). Sinoe $C_{p P}$ is a function of aite and ohape, it vill ohange with the ocnfigufation ohange. Therefore, by ruaniag pover calibration at an sititude and weight while ohanging oonilguretion, the effoots of oonflguration on BRP, V_{t}, or V_{e} maj be determined. A typioal oalibration of oowl flap pooition effeote io mom in Figure 4.51.

The valuan of Δ gripy are applloable at any altitude and can bo applisd to any powr anlibration to deterine the pover required for the epecified oonifguration. Hotioe should be taken that these ohanges apply to pover required only. Range and top epeod oan, In som casee, be increased in opite of an inoreaced cooling drag, beoauge englne operating limite are raised under lows temperature conditions.

The Canaralized Pover Paramator (PIW) and Spend Paramoter (VIW) - Rociprocating Papine Alrcraft

The problem of generalizing date for all veights and altitudes ie aocompliohed by the epeed power polar, PIW ve VIW plot. This plot prosente all epeed power information with a minimum amount of data. The paramoters for thie plot aro dotermined fran equation 4.213. By inserting sam oonotant groas woight in this equation, two easily oalculated terms are defined which completely resolvo to a alngle ourve all flight conditions for a givon configuration.

$$
\begin{equation*}
\frac{T: Q P \sqrt{\sigma}}{\left(W_{t} / W_{1}\right)^{3 / 2}}-k_{1} C_{D P} 3\left(\frac{\sigma \nabla_{t}^{2}}{\left(W_{t} / W_{0} T\right.}\right)^{3 / 2}+\frac{k_{2} W_{0}^{2}}{\left(\frac{\sigma_{0} \nabla_{t}^{2}}{W_{t} / W_{0}}\right)^{\frac{1}{2} \delta^{C}}} \tag{4.601}
\end{equation*}
$$

where:

$$
\begin{aligned}
& k_{1}=1.0414 \times 10^{-5} \\
& k_{p}=.28820 \\
& \text { wip }=\eta_{p} \mathrm{BHP} \\
& \eta_{p}=\text { propelier ofsiolenoy }
\end{aligned}
$$

Anguing the propeller effiolenoy to be virtually oonctant for given ranges at ove, equation 4.601 घas bo writton:

Tre left alde it onlled "PIN." The right side ia oalled "VIN." A ts. 1 PIMFIN plot is 111urtratod in Figure 4.61. Cenorally the atandard teke off groan. wieht is ueed ac Wo.

The ralidity of the PIW-VIM plot can be demongtrated by dimonalanal analysie mothods. Bj this maang it can be ehown that for a given oonfiguration and propolier the paramoter,
$\frac{\operatorname{BiP} \sqrt{\rho}}{8 P / 2}, \frac{\pi \sqrt{p}}{W z}, \frac{\nabla_{t} \sqrt{p}}{W}$
vere: If is the onging rym
vill define opeed power performanoe at any altitude and woicht an wown in Mgwe 4.62. 81D00 the three paranetere can be preeented on one graph the plot in mont meoful for estimating genoral performane and deternining deelgn oriteris. In peotice the paramotory are divided by tho appropriate congtant standard weight to give PIM, VIN, and IIN.

Figure 4.61
mpical PIN-FIN Plot
Io praction applioation the valu of propelier efflolonoy vill be apperedmately oonatant over mont of the FIN renge. In thet aav only the jarantere PIN and VIM vill be precont, and the plot in very valuable for procentation and mtendardisation of tent data an dicoured previongly. ELDoe the PIM-VII plot io the alrosuft polar reduced to cen-level, etandard roient coodition, only a ohange in propellor efflolonoy could produce more than one paremetor for a given oongiderntion. At very lou or high flight apeede ohangen in propeller offioleney an be notionable.

VIN
IIgure $4.6 e$
PIV-VIW Plot With Fp Puranotera

Tor PIW-VIW P1Ot

(1)	V_{1}	Knots	Indicatod alr opeod
(2)	ΔV_{10}	lnota	Air-apod inatrument ocrrection
(3)	H_{t}	2ba	Tost groes voight
(4)	$\Delta V^{\text {po }}$	bnots	Alr-apeod poition orror correeponding to (1) and (3) and callbration data
(5)	V_{0}	knots	Callbrated alr speed (1) + (2) + (4)
(6)	E_{1}	foet	Indicated preasure altitude
(7)	ΔH_{10}	foet	Altimeter instrument correotion
(B)	$\Delta \mathrm{B}_{\mathrm{po}}$	foet	Altimeter ponition oorrection ocrrenpanding to (1) and (3) and (6) and calibration data
(9)	H_{0}	foot	True preseure altitude, (6) + (7) + (8)
(10)	${ }^{\text {P }}$	"ES	Atmonphoric pressure oorresponding to (9)
(11)	M		Naoh number from (5) and (9) and CBARP
(12)	110	${ }^{\circ} \mathrm{C}$	8.5
(13)	Δt_{10}	${ }^{\circ} \mathrm{C}$	Tomperature ingtruent correotion
(24)	${ }_{1} 10$	${ }^{\circ} \mathrm{C}$	Indicatod ingtrument oorreoted temperatwo (12) + (13)
(15)	$t_{\text {at }}$	${ }^{\circ} \mathrm{C}$	Toat free air terporature fram (il) and (14) and CHART 8.2
(26)	$\sqrt{6}$		$\sqrt{9.625(10)} / \sqrt{(15)+273}$
(17)	${ }^{\circ}$	160	gendard groendveight
(18)	$\left(W_{4} / W_{3}\right)^{\frac{1}{2}}$		$[(3)+(17)]{ }^{\frac{1}{2}}$
(29)	$\left(N_{t} / w_{s}\right)^{3 / 2}$		$[(3)+(17)]^{3 / 2}$
(20)	$\nabla_{t t}$	znote	Toet true opeed 38.944 (11) $\times \sqrt{(15)+275}$
(22)	VI	Prote	or (11) and (15) and CEART 8.4 $(20) \times(16)+(18)$
(22)	EHPF_{5}		Tont brabe horseporor from torque meter
(23)	PIM		or pover ohart $(22) \times(16)+(19)$
(24)	Plot (23)	7. (21)	1guration.

SECTIOA 4.7
Duel Conoumption - Rance and Bndurance

- Reciprocating Praine Alroraft

fUEL COMSLAPTION AND BGFC

Data relative to fuel oonoumption io obtelned in flight whenever poaniblo, rather than by uee of the engine manufaoturer'g data. Flight fuel flow data io most accurately obtalned by uee of timed fuel totaliser readinge or direotiy by uet of rate of flow motera. In elther oage volve flow mut be oonverted to velsht flow. Conerally, gacoline is ooneldered to have an arerage mea lovel etandard veight of 6.0 ibe/gal. If more acourate masuremonte are deaired, vhere large quanilitied of fuol are involved at very low temparaturen, the apeciflc gravity should be determined bofore the 111 ght and be uned with a temperature ourreotion faotor to appratimate in-plight epeoifio gravity. Thie is only nocoseary where long tive high-altitude flighte are involved and teat groes velght may be apprealably affeoted. In mont teat vork uee of the beforeflight apocific gravity io aufficient.

$$
\begin{equation*}
W_{f}=\frac{621}{h r}=8.339 \times 8 p 8 \tag{4.701}
\end{equation*}
$$

where:

$$
\begin{aligned}
& W_{P}=1 b / h r, f u a l \\
& S P_{8} \text { - fuel apeolfic gravity }
\end{aligned}
$$

In reporit presentation of ful coner ption or range date the teot reanite ebould be oorreoted to a 6.0 ibe per eallon etandard for gapoline.

The brabe apecifio fuel oonguption (RENC) is deteryined from flou date taken during the normal power callbration at verioun ongin eettinge.

BSTC

$$
\begin{equation*}
-\frac{W_{f}}{B H P} \tag{4.708}
\end{equation*}
$$

This data is uavaliy plotted ve BRP, wlongalde the ajeed-power ourvee ae abom in Figure 4.71.

SPACIFIC \&ANCR

Beause the renge obarts are used for obtaining both flight diotance and determining flying teohnique, the rage data is acmetime plottod vo botk true and calibrated or indicated apeod. Range in not plotted an mon exoept for eaple
 brated br indicated epeed.

$$
E R G=\frac{\nabla_{t}}{V_{f}}-\text { uautiosl air milea/Ib }
$$

A typioal plot 1s show in Figuro 4.72.

GAKIRRATED AIR SPMED, ∇_{0}

Figure 4. 72
Epeoific Range Dita - Congtant Croes Weight
Fotioe should be taken that tho altitudes ohom on the brake opeoifio fuel congwpticn graph are the variou deneity altitudea at which the points wore ilaw. the altitudea an the peed-power graphe are prosaure altitude日. Bperience hae shown thet, congidering the mall difforencen betwoen teat proesure altitude and teat demalty altitude, fuel 810 acouraoy vill not be maamably effeoted by aeguing the fuel 110 N and apeed power graphe to agree at the aam proaguro altitude. In may caces spoific fuel flow is ocmpletely indepondent of altitudes, but ueuall Berc will Incroace with altitude for at leagt part of the altitude range.

Epeoiflc range data ofn be ocmreoted for weight variations, but, beanme the Fevc ay vary rith altitude, the welght oowpotion abould not be applied aorowe

$$
\begin{equation*}
\operatorname{seg}-\operatorname{sic} G_{1}\left(W_{1}\right)\left(W_{2}\right) \tag{4.704}
\end{equation*}
$$

Men Eig changes due to avight change, ∇_{t} mut change;

$$
\begin{equation*}
\nabla_{t 2}=\nabla_{t 1} \sqrt{\frac{W_{2}}{W_{1}}} \tag{4.705}
\end{equation*}
$$

SPTCIFIC EIDMRATCE

Maximan apecific andurance (Srimax) can be obtainod from a fuel conaumption plot rade alongeide the BEP $\mathrm{Va}_{\mathrm{t}} \nabla_{t}$ or ∇_{C} graphs as in Figure 4.73. Specific endurance ia defined as the reciprocal of the fuel IION, Wf.

P1 gure 4.73
Mothod of Pregenting Fuel Congmotion Data
Specific enduranoe data may be corrected for voight variation, but, becaues the Berc may vary elightly vith deneity altitude the corraction should not be applied acroes large altitude inoremente. At the samo doncity altitude and mixture eetting,

$$
\begin{equation*}
\operatorname{sig}_{2}=\sin _{2}\binom{\left(H_{1}\right)}{\left(H_{2}\right)}^{3 / 2} \tag{4.706}
\end{equation*}
$$

Hhen ST ohanges due to a veight change ∇_{t} mant ohange,

$$
\begin{equation*}
\nabla_{t 2}=\nabla_{t 1} \sqrt{\frac{W_{2}}{W_{1}}} \tag{4.707}
\end{equation*}
$$

ACTUAL RNIGE AID EITDURANCE

From plote of spocific range (nautioal air milen por pound of fuel) ve troe apeed and altitude for each weight oandition it will be poasible to obtain the renge for any denired oraising oandition along with the ocoreapooding BKP, rym, manifold proseuren and indicated apeeds. For som airoraft porformace reporta it may be required that a teat tactical mianion be flown to compare expected and actual resulte, perhape for a radius of aotion problem.

Actani range ie bent determined fram a plot of the opeoific range paramoter definod by equations 4.704 and 4.705 for a ooastant denaity altitude.

$$
\begin{equation*}
\frac{\nabla_{t} U}{W_{f}}=P\left(\frac{\nabla_{t}}{\sqrt{W}}\right) \tag{4,708}
\end{equation*}
$$

whero:

$$
\begin{aligned}
& \frac{\nabla_{t} U}{Z_{P}}=\text { apecific range paramoter } \\
& \frac{\nabla_{t}}{V W}=\text { opeod paramoter }
\end{aligned}
$$

Fquition 4.708 is vald for both teat and atandard das conditions. For a oonatant value of the apeed paramoter the range in,

$$
\begin{equation*}
n_{B}=\frac{\nabla_{t} \nabla}{\nabla_{2}} \int_{\omega_{1}}^{\pi_{2}} \frac{\lambda}{\nabla} d \tag{4.709}
\end{equation*}
$$

where:
$d N=f+e l$ vight difforential (negative)
Integrating, the range beocmes,

$$
\begin{equation*}
B_{G}=\left(\frac{\nabla_{t} \nabla}{\nabla_{P}}\right)^{\text {in }}\left(\frac{\nabla_{1}}{\nabla_{2}}\right) \tag{4.710}
\end{equation*}
$$

Valnes of in $\left(\mathrm{B}_{2} / \mathrm{H}_{2}\right)$ maj be deternined from CRART 4.71 at the ond of this obapter.
sotual ondurance is beat detormined from a plot of the apeoific onduranoe fran a plot of the epeoiflo ondurance paranter dofinod by equation 4.706 and 4.707 for a oonatant denuity altitude.

$$
\begin{equation*}
\frac{w^{3 / 2}}{v_{f}}=1\left(\frac{\nabla_{t}}{v_{i}}\right) \tag{4.711}
\end{equation*}
$$

viere:

$$
\frac{4^{3 / 2}}{W_{f}} \text { - opecifio ondurenoe paranter }
$$

Ant 6273

For a constant value of the epeed paramoter the ondurance 18,

$$
\begin{equation*}
\text { E }=\left(\frac{W^{3 / 2}}{W_{1}}\right) \int_{W_{1}}^{W_{2}} \frac{1}{W^{372}} d W \tag{4.712}
\end{equation*}
$$

Integrating, the endurance beoomes,

$$
\begin{equation*}
E=\left(\frac{w^{3 / 2}}{W_{1}}\right) \quad\left(\frac{2}{\sqrt{W_{2}}}-\frac{2}{\sqrt{W_{1}}}\right) \tag{4.713}
\end{equation*}
$$

Values of $2 / \sqrt{W}$ may be determined fram CBART 4.72 at the ond of this chaptor.

DATA REDUCTION OUTLINE (4.71)
For BSFC and Range Data - Reciprocatine
(To be uaed with BHP Data Reduction Outilne in Soction 4.4)

(25) (26)	$W_{\text {w }}$	$\begin{aligned} & \text { gale/hr } \\ & \text { lbu/hr } \end{aligned}$	Teat volumetric fuel flow Test fuel voight-flow (25) x (oonvorgion factor determinod by fuel and temp)
(27)	bsic	1bs/BEP- H (Brake specific fuel congumption (26) $+(17)$
(28)	Plot (27) ve		
(29)	SR8	nautical alr	Speoifio range, $[(23)+(16)]+(26)$
(30)	Plot (29) ve	(23) or (5), at	h altitude

SECTION 4.8

Speed-Power Curves - Turbojet Aircraft

The aircraft drag parameter is a function of Mach number and the weightpressure parameter as shown in equation 4.125.

$$
\begin{equation*}
D / P_{a}=f\left(M, W / P_{a}\right) \tag{4,801}
\end{equation*}
$$

In jet-powered aircraft in stabilized level flight the propulsive or net jet thrust equals the aircraft's drag. For flight performance data engine rmis a more convenient engine criterion than thrust horsepower or drag. As previously shown in Chapter Three.

$$
\begin{equation*}
F_{n} / P_{a}=f\left(M_{1}, N / \sqrt{T_{a}}\right) \tag{4.802}
\end{equation*}
$$

By equating equations 4.801 and 4.802.

$$
\begin{equation*}
N / \sqrt{T_{a}}=f\left(H_{0} W / P_{a}\right) \tag{4.803}
\end{equation*}
$$

For convience equation 4.803 is written,

$$
\begin{equation*}
N / \sqrt{\theta_{a}}=f\left(M_{0}, W / \delta_{a}\right) \tag{4,804}
\end{equation*}
$$

where

$$
\begin{aligned}
& \theta_{a}=T_{a} / 288 \\
& \delta_{a}=P_{a} / 29.92 \\
& M=f\left(V_{c} \text { and } P_{a}\right) \\
& N=x P^{m}
\end{aligned}
$$

If the value of the W / δ_{a} parameter is fixed, $N / \sqrt{\theta_{a}}$ versus M curves will define the speed power relationship.

Speed-powar tests in turbojet aircraft are flown by setting an rpmand holding the aircraft at a specified pressure altitude until the speed is stabilized. This is done for each test point. llowever, at low speeds near the stall condition, jet airplanes will not stabilize well. This is because the thrust decreases as the speed decreases so that a condition may be reached where at a constant rpi the speed will slowly fall until the aircraft stalls. The aircraft can never be successfully operated in this range, but flight tests sometimes require drag evaluation at low speeds. In order to include this low speed range in the power required curves, a system has been devised to gather the necessary data from a test in which the aircraft is allowed to descend slightly to maintain its speed.

Frai: n 11 mb data reduotion (Chaptor Five),
$R / C=\frac{101.3 V_{t}}{W}\left(F_{n}-D\right)$
Or
$R / D=\frac{101.3 \nabla_{t}}{W}\left(D-F_{n}\right)$
where:

$$
\begin{aligned}
& R / D= \text { rate of descent, } \mathrm{ft} / \mathrm{min} \\
& W= \text { weight - lbe } \\
& V_{t}=\text { true opeed - knots } \\
& F_{n}= \text { not thruat }-1 b s \\
& D= \text { dras - 1bs. Assumed constant for the descent and lovel } \\
& \text { flight condition at the aame } V_{t} .
\end{aligned}
$$

If the aircraft is stabilized on a Mach number while making a small doscont at a measurad rate, the value of ($D-F_{n}$) can be computed. This value vill be the difference betvoen the thrust required for level ilight at the eame Mach number and the thrust being dellivered. By the use of net thruat computation or ongine manufacturer's curves this additional thruat required can be converted to a required rpm increase giving equivalent lovel ilight performance. This mothod is used at whatever epeeds the pilot inds he cannot stabilize the airplane in lovel flight. But rates of descont of more than $200 \mathrm{ft} / \mathrm{min} \mathbf{w} 111 \mathrm{not}$ produce satiofactory resulte. Once a lovel flight opeed and rpm are obtained by this method, all other lovel rlight corrections are applied in the normal mannor.

In turbojet povered airoraft compreselbility phonomens, Mach number offecte, are significant at all altitudes. For thie reason, no generalized epeedpover ourve, such as the PIW-VIW curve, is appilcable. Soparate lovel flight data reoults must be presented as a function of rpm and apeod or kach number for each value of W / P_{g} flown, as in equation 4.803. The data is actualis presented for each altitude, P_{a}, at a oonstant veight for that altitude: One lovel filght performance prepentation is etandard das rpm va V_{C} for constant preseure altitudes, H_{0}. A typical plot of thig type is ohown in Figure 4.81. Standard day rpm is dofined as:
rpm otd $=\frac{N}{V_{\text {Iat }}} \times \sqrt{T_{a s}}$
This same plot is used also to ohow calibratod apeed reduotion (drab inoreases) resulting from configuration changes as in Pigure 4.82.

Figure 4.81
Turbolet Rym- V_{0} Precentation

F1gure 4.82
Effoot of Conflguration Change on Turbojot spood and Rpen

Using equation 4.804 it is possible to correct and plot, all the level flight data for standard day sea level condition. This is done by plotting $\mathrm{N} / \sqrt{\sigma_{a}}$ veg Mach number for constant values of $\mathrm{W} / \delta_{\mathrm{a}}$ obtained at various alitides. This plot, Figure 4.83, show immediately the sea level weight Ifnitations at maximum rpm at various Mach numbers. By interpolation the plot can be used to find aped power conditions for any weight and altitude. Figure 4.83 is presented in the final performance report to show the obvious Mason number-campreseibility effects on engine performance requirements. It also mat be used to obtain weight corrected data for plotting as show in Figures 4.81 and 4.82. When external drag items such an rockets or babe are added to the aircraft it is often necessary to present both the effects on indicated speed and the compressibility effects. Speed effects are anon on a graph similar to that of Figure 4.82. Mach number compressibility of fects on the power required for external drag items can be shown as illustraced in Figure 4.84.

Figure 4.83
Typical Boa Level Turbojet Performance Data
The type of plot need to am up the level flIght performance for a turbojet ararat is 111ustrated in Figure 4.85. This graph preeonte the standard dar true upend vi altitude data for various actual engine rene. Also shown are a reference max. Mach number and a reogmonded max. range orulec condition. In ie oped va altitude plot is generally presented for each major aircraft configuration, such an with wing tip tanto installed and without. The oped or altitude curves axe moat easily obtained by arose plotting weight correoted teat data from Figure 4.81 or 4.83 .

MOE WUNEE or $7+\sqrt{Q_{2}}$

Flgure 4.84
Tpical Confleuration Prfect on Ser Lovel Turbojet Performance Data

DATA REDUCTION OUTLINE (4.81)
For Ievel Plight Jet Alreraft Power Calibration

Molebt Change Corrections for Spedd
 Pover Data - Turboiet Alicreft

Equation 4.210 presente the analytical expreseion fur drag force in terme of . q_{1} and $C_{\text {DP }}$. If $C_{\text {DP }}$ is constant, the equation reverta to form in which incremente of D for increments of M may be calculated. This is not the case for high-speed aircraft under the offects of compressibility. Since equation 4.210 assumes incompreseible air fiow conditions, it cannot be used as a means of drag-weight-speed correction at high Mech numbers. Eseentially. $C_{\text {pp }}$ is an unpradictable function of $V / P_{\text {a }}$ and Mach aumber under these filght conditions, which means veight corrections to apeod or drag must be accomplished empirically. The weight correction must be made on the basis of test data obtainod from the given eirplane and engine conbination. Becaute this muet be done in the high speed range the same procedure is used in the low sped range.

The tasis for the two weight-correction methods described bere is the fact that the parameter W / \mathcal{B}_{a} can be changed oither by changing W or P_{a}. If a series of test rund are made at different altitudes and at the same Mach number at each altitude, a range of $\nabla \sqrt{\theta_{a}}$ and V / B_{a} would be covered. By making a plot of $\mathrm{V} / \sqrt{\theta_{a}} \mathrm{Va} \mathrm{W} / \mathrm{B}_{\mathrm{a}}$. as in Pigure 4.91, with each line representing a Mach number. the chagge in $\mathrm{F} / \sqrt{\theta_{a}}$ with respect to chagge in $\mathrm{W} / \mathrm{B}_{\mathrm{a}}$ can be found. Or, moro directly. the correct $N / \sqrt{b_{a}}$ for any W / σ_{a} and M is immodiataly apparent.

If $W / 8_{a}$ values are \pm is of a given value, weight correctione are not required. This can be accomplished by good stabilisation reaulting from ciosaly estimated speds and rpm'a required for a given V / θ_{a}. a pitot connected rate of cliab indicator can be used to show small amonats of acceleration in level filght and reduce time required to tabilise.

Pigure 4.91
Turbojet Aircraft Porformance with Mach number Parametern.

Figure 4.92
Corrected Turbojet Performance Data
In actual. Illght teating eatabliohing atabilized flight on apecific Mach manar 10 diffioult, 00 level Ilight tent data are plottod in the form of w/f, Va M. If the teat point are flom at ouccousively lowor Mach numbin at a conatant gresoure eltitude, the $\mathrm{W} / \mathrm{G}_{\mathrm{a}}$ valus diaingohes for each point. Inis effeot in chown in Pigure 4.92.

To make pecesuary woight correotion an approximate method, using plote of $\Delta\left(N / \sqrt{\theta_{s}}\right) / \Delta\left(W / \epsilon_{\mathrm{a}}\right)$ hag been devieed. Nomal power calibrations are flom by eetting zpa and silowing opecd to atabilize. A plot, Figure 4.93, in than made of $M / \sqrt{6} \mathrm{~V}_{\mathrm{e}}$ ve Mach number at each altitude, dieregarding the fact that the $\mathrm{W} / \mathrm{G}_{\mathrm{a}}$ for eadh point in different. Data at onch altitude aro accumated in the eamo zanoer by pharting tho power calibration st high Mach numbers. Ilest, at oach altitude the velue of the W / δ_{a}^{\prime} 's of each point are averaged, and the ontire calibration in aearmid to have beon 110 wn at the arerage $\mathrm{W} / \mathrm{S}_{\mathrm{a}}$. Inme of vongtant Maoh number are drewn on the graph an in Figure 4.93. TheJ will intereeot the power

Fran these $I / \sqrt{\sigma_{a}}$ valuen a plot of $\bar{J} / \sqrt{\sigma_{a}}$ va W / σ_{a} at oonotant Magh numbern can bo made and the olopes, $d\left(\eta \sqrt{\theta_{a}}\right) / d\left(\omega / \sigma_{a}\right)$, determined, or $(\Delta I / \sqrt{\theta})(\Delta u / \delta)$ can be determined direotly by taking inerements betwoen power calibratione at two altitudes.

$$
\begin{equation*}
\text { Inorenont ratio }=\frac{\left(n \sqrt{\theta_{a}}\right)_{2}-\left(n \sqrt{\theta_{a}}\right)_{1}}{\left(W / \delta_{a}\right)_{2}-\left(W / \delta_{a}\right)_{2}} \tag{4.901}
\end{equation*}
$$

SInoe the eacruption ha slreadr been mate that osoh altitode oulibration was flown at an arimg $W / 6_{\text {a }}$ or weicht, socuraoy vill not be impaired by
 the inormenst ratio dionid be epplied. The inormart ratio in plotted ageinet thin arorage $W / 6$ altitude an in Mave 4.94.

From Figare 4.9h all tent pointe ean be ocervoted to a dealred valme

 tude oo that the ocrocept wae eatablighed that a wient ourreotica bronght date to the flom altitude at a oraplard wight; howror, thon the W/G oorreotion in made both veligt and altitude oen by ohaged. Dy colooting a otandafd midft, but not requiring the atandard preasure altitode to be the flown altitude, ($\left(W / \sigma_{a}\right)$ otd can be found that vill ninimise $\Delta W / \sigma_{\text {. }}$ and ooneequantly inoreace noouracy. For exnple: acion of pointa le flown at $20,000 \mathrm{ft}$. Fith vieht varying fram 14,000 to 12,000 lbe. of ving an
 lbs. If an clititude of $18,200 \mathrm{ft}$. is celeoted (W / G, fotd vill equal the average $\mathrm{H} / \mathrm{6}$ flow. This ehould require a minime point oy point ocrreotion to the gtandard W/Ge Daleas a epeolel reavon wee regalred for the $20,000 \mathrm{ft}$. aellbration, the $18,100 \mathrm{ft}$. callibration gives inforation of equal vaive.

F18050 4.94
 Trubojot Iovel Fight Veieht Correotiona

Another velght correotion mothod for jot alroraft is denigmed to obtain a
 tratod in Mgure 4.91. Thil type wight oorreotion enploy four bealo etepe:
(1) Teot pointe are flown ocugecutivelf from higt Moh number to. low at a conatant preacure altitude. Pointe hhould be flown at anall and approxientely equal tim intervale.
(2) Plot I/ Vean ve M for each altitude Ravn.
(3) Plot W / H_{a} vi M for eaoh altitude flom.
(4) Croan plot, from (2) and (3) abovo, $N / \sqrt{\theta_{5}}$ ve w / δ_{a} for conentant Maoh number paramotore en illugtrated in Figuro 4.91. This figal orona plot can be need to obtain \bar{W} / V_{s} for any M, W, and H_{0} deaired. In addition $\mathrm{I} / \sqrt{\theta}$ valuen for max. rpm and varions otendard eltitudes can be inoluded to defing the max. opocd pointe.

To obviate the need for a wight ocrreotion the level flight teate for both ocavantional and jut povered airorart can be flown at a conntant valmo of W / S_{a}.
 in cilin, and rate of fiol need during lovel f11ght at a partioular altitude.

If thee factore are carefully analyzed, it it poseiblo to mak flight guidea ensbilng the teet pilot to record data at deeired conetant valuee of W / δ_{a}. A typical $\mathrm{H} / \mathrm{S}_{\mathrm{a}}$ gride is shown in Pigure 4.95.

P1garo 4.95
Gulde Card for Flying at Constant $W / \boldsymbol{S}_{\mathrm{a}}$
Oeing this gaide the pilot peeds only to poep a sight lead on hif fuol flow counter at a partioular altitude. Whon the fuel romaining cormter valoo for the alroraft ageree with the fuol rewaining ralue required by the guide card the pilot reocide the mocecary dats. The offlolonoy of this mothod for holding a ocartent W / P_{a} depende on the oldil of tho pilot and nay require som training on hia part to prevent long lapees betreen teat pointe. A radio teohnique oan algo be applied this mothod. The ground ond of the redio link doing the necoesary oaloulation thon inforaing the pilot of the fuel counter readinge and altitudes at which to reoord data.

Fuel Congumption fidurance and Pange - Turboidet Alreiait

Data relative to fuel consumption for jet aircraft are obtained in elinht. whenever poanible, rather than bj une of the ongine manifacturer'e data. Filght fuel flow data in most acnurately obtaired by uee of time frel tatal. izer readinge or directiy bj uce of rate of flow woters. In either eang rimer
 types:

$$
\begin{aligned}
& \text { AIT-F-38 (JP-1) }=6.7 \mathrm{Ibs} / \mathrm{ga} \text {. standard weight for wes invel atantain } \\
& \text { conditionm } \\
& \text { AII-F-58 (JP-3) }=6.42 \mathrm{Iba} / \text { Gal atandard wight fer mex Inval. at.andam } \\
& \text { conditiong }
\end{aligned}
$$

If more accurate manuremonte are desired, vbere lare quantitios of fuel arw involved at vers low temperaturen, the apeolfio gravity ohmild be determinod before the flight and be uged with a tomperature coxrection factrr to apprexs mite the in-flight apeoific gravity. This procedure is only geconsery whera long-tis high altitude flights are involved and the teat eroen wight la apprealably affooted. In mont teat work ung of the bercm flight apmeifin gravity 10 oufficiont.

where:

$$
\begin{aligned}
W_{f} & =1 b_{m} / \mathrm{hr} \\
S_{p} & =\text { Speo1fio gravity }
\end{aligned}
$$

In report presentation of fuel oonsumption or range data the test rosulta axe oorreoted to average gea level miandard pounds por gallon vinum for the frel being ued.

For turbojet airoraft fuol coosmiption in handied in the fors of the frol flow paramter developed in Chapter Threc.

where?

$$
\begin{aligned}
& W_{P} \text { - Fuel 110w } 2 \mathrm{ba} / \mathrm{hr} \text { or gala/hr } \\
& p_{t 2}=\text { ongin inlot, totel proseure } \\
& \text { T } \mathrm{f} 2 \text { - engine inlot total femperature } \\
& \delta_{2}=P_{t 2} / \text { B.L. etd preseme } \\
& \theta_{2} \text { - } T_{t 2} / \text { B. Le atd terperature }
\end{aligned}
$$

As shom in Chapter Three, the fuel llow paramater is a function of $N / \sqrt{\theta}+\boldsymbol{t}$ and engine iniot Mach number. On the ongine manufacturer's "oxpected performance ourves" it can be seen that through most of the in-filight $M / \sqrt{\sigma_{t 2}}$ range the fual fiow parmeter is a gingle carve at all Mach numbers. When
 family of curves which for all practicsl purposes is a single curve. Figure 4.10.1 illustrates this plot. It will be noted that at the lover carreoted rpen values for each altitude the curves tond to divergs. Tnis is a result of both decreased Mach number at the bighor altitudea for the same corrected rpm values and deoreased combuation efficiency at the higher altitudes.

11gury 4.20 .1
Torbojot Frol Fion Prenatation
It should be noted that ambient ocoditions ang be uged in the frol flow paramoter 1800 the affects of Mach number are negligible unlese jarge $\mathrm{W} / \mathrm{f}_{\mathrm{a}}$ variationa at low rpm ace powalbio. A plot of $\bar{Z} / \sqrt{\theta_{\mathrm{a}}}$ ve $\mathrm{K}_{\mathrm{p}} / \delta_{\mathrm{a}}$ V的a appeare noarly identioal to Migme 4.10 .1 and 15 an acourate for doterinining fuel oonuription foc mont rpa, atmomphorio conditione, and Moh mabere. Uaing engine inlot oooditions the frol fiov paramotor is applicable in both olimb and level plignt. With ambiont oomilition in the paramoter it is only thearetically applioable to lovel flight deth becaune of differoncen in the iniet proesure tean roculting from difforenoes in Man number for the ollmb and level filght ocodition. fotrually the ambient funi flow paremotor is unually applicable to olinb data the error from Mach mumer offeste in the olimb rpa rango is negligible.

EDO RANGE

It can be seen from Figure 4.10 .1 that maximum specific endurance, $1 / \mathbf{U}_{f}$, for jet aircraft will be at the lowest rpm that will maintain level fight above the stall condition. It is also seen that specific endurance increases with altitude. Endurance is bet evaluated with the specific endurance parameter.

The engine fuel flow function is,

$$
\frac{U_{c}}{P_{a} V_{Y_{a}}}=1\left(\frac{\frac{s}{\sqrt{P_{a}}},}{\sqrt[\nabla_{t}]{Y_{a}}}\right)
$$

For the aircraft the rpm function is,

$$
\begin{equation*}
\frac{H}{\sqrt{T_{a}}}=1\left(\frac{V_{t}}{V_{a}} \cdot \frac{V}{P_{a}}\right) \tag{4.10.02}
\end{equation*}
$$

Functionally combining the above two equations in term of B, θ and $M_{,}$

$$
\begin{equation*}
\frac{\operatorname{b}_{a} \sqrt{\theta_{a}}}{v_{f}}=1\left(u_{0}, \frac{v}{\delta_{a}}\right) \tag{4.10.03}
\end{equation*}
$$

A plot of equation 4.10 .03 , as in Figure 4.10 .2 should be made throughout the complete speed range of the aircraft, so that max. endurance and endurance at any speed can be compared.

surbo-Jet madurance and Max. Endurance Plot
Arid 6273
4-35
inta fil this mot should be obtalned at constant $W / \delta_{a}{ }^{\prime}$, but negligible orrort \cdots introiber if $W / 8_{a}$ changes are amall during powo calibratione at one altitude.

Dast. ondirance is obtained by maintaining a constant $W / 8_{a}$. This nocessi-
 pliling as in Figure 4.10 .2 a $\mathrm{N} / \mathrm{B}_{\mathrm{a}}$ for max. endurance can be found. Actral onA i. inna at a constant $\% / 8_{A}$ is found by integration.

$$
F=\left(\frac{\delta_{a} N N^{\prime} \bar{\theta}_{A}}{\|_{f}}\right) \int_{w_{1}}^{w_{2}} \frac{d Y}{\delta_{a} \sqrt{\theta_{B}}}
$$

$=\cdots \operatorname{ctsting} d 8_{a}$ for $d W$, changing inimits, integrating and almplifying

$$
\begin{equation*}
F=10.512\left(\frac{8_{a} \sqrt{\theta_{a}}}{W_{f}}\right)\left(\frac{w}{B_{a}}\right) \frac{2}{\sqrt{\theta_{a_{1}}}}\left[\left(\frac{w_{1}}{W_{2}}\right)^{.095}-1\right] \tag{4.10.05A}
\end{equation*}
$$

$$
B=1.15\left(\frac{\theta_{B} \sqrt{\theta_{E}}}{W_{1}}\right) \frac{y}{\theta_{a}} \ln \left(\frac{w_{1}}{w_{2}}\right)
$$

Equation 4.10 .054 assumes ntandard temperature lapse rete and may be used below the isothermal altitude. 4.10 .058 aseume conetant air tomperature $\left(-55^{\circ} \mathrm{C}\right)$ and is ased above the leothermel altitude.

Values of $\ln \left(W_{1} / W_{2}\right)$ may be found in criar 4.71 at the ond of this chaptor.
rance
The actual range of turbojet aircraft is best ovaluated by using the npectific range parameter dorived from equation 4.10.03. Ey the rulen of dimentional analysia this equation can be put in the form.

$$
\begin{equation*}
\frac{\nabla_{t} 8_{a}}{\nabla_{f}}=1\left(M_{0} \frac{V_{0}}{\delta_{a}}\right) \tag{4.10.06}
\end{equation*}
$$

where:

$$
\frac{v_{t} 8_{a}}{V_{f}}=5 B_{g} 8_{a} \text {, apocific range parameter, mautical milen/do }
$$

Data for plotting this equation should be obtained at constant raluos of $W / \mathrm{B}_{\mathrm{a}}$ in level flight. However, if data are obtained at a constant altitude and asall porcent changes in weight are involvod, the orror introduced will be negligible. The data for equation 4.10 .06 are plotted as in Figure 4.10.3. Thie ligure may be crose plotied to present the data for conetant Mach qumber paramotera and to determine optiman $W / 8_{a}$ for maximum range.

F1gure 4.20 .3
Turbojet Specilio Range Parameter Plot, constant W/S Values

F1gure 4.10 .4
Turbojot Specific Range Paramoter
and Maximu Bange Plots, Constant Mah No. Values

From the tro apecific range parametor plota it la poasible to determine the effecte of any of the variables on the actual range. Also, if very ligh values of $\mathrm{W} / \delta_{\mathrm{a}}$ can be obtained, it is poseible to determine from Figare 4.10.4 a value of $\mathrm{H} / \mathrm{\delta}_{\mathrm{a}}$ and Mach number that gives max range independont of altitude.

It is apparent, from these ingures and equation 4.10.00, that the best cruise condition for a given Mach number is at conetant $\mathrm{W} / \mathrm{s}_{\mathrm{a}}$ value. The higher the altitude the greater is the range until the W / σ_{a} for max range is reached. The cruise at constant $\mathrm{W} / \mathrm{o}_{\mathrm{a}}$ requires a slight continuous climb (about 20-50 ft/ $m i n)$ to decrease atmospheric pressure as the veight decreases. Actual range at conetant $\mathrm{W} / \mathrm{G}_{\mathrm{a}}$ way bo determined by integration.

$$
\begin{equation*}
\text { Range }=\left(\frac{\nabla_{t} \delta_{a}}{W_{i}}\right) \int_{W_{1}}^{W_{2}} \frac{d W}{\delta_{a}} \tag{4.10.07}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \frac{W_{1}}{\delta_{1}}=\frac{W_{2}}{\delta_{2}}=\frac{d W}{d \delta_{a}}=\text { conotant } \\
& d W=\text { suel weight differential (nogative) }
\end{aligned}
$$

Subatituting $\mathrm{d} \delta$ a for dW , charging limite and integrating

$$
\begin{equation*}
\operatorname{Rg}=\left(\frac{\nabla_{t} \delta_{a}}{W_{f}}\right) \frac{W}{\delta_{a}} \quad \ln \left(\frac{W_{1}}{W_{2}}\right) \tag{4.10.08}
\end{equation*}
$$

Values of in ($\mathrm{H}_{1} / \mathrm{H}_{2}$) may be found in CBART 4.71 at the ond of this chapter.
To determine the range at a constant altitude and Mach number, the plot in Figure 4.10 .4 may bo used and the integration accomplished in oteps for intervals where the olope of the fach number paramoters is nearly constant. In this case,

$$
\begin{equation*}
\Delta R_{G}=\frac{\left(S R g \delta_{a}\right)_{1}+\left(S R G \delta_{a}\right)_{2}}{2 \delta} \quad\left(W_{1}-W_{2}\right) \tag{4.10.09}
\end{equation*}
$$

PERFORMANCE REPORT PRPSEITIATTON

Ordinarily, the apocific range and ondurance paranoters, oquatione 4.10.03 and 4.10.06 are not inoluded in the aircraft performance report unlese actual range and endurance data are to be included. In most oasea only the apecific range is presented an a function of calibrated or otandard day true opoed at opecilied altitudee and velghta.

Sinos Mach number can be defined an a Punotion of pressure altitude and calibratiod (indicated) speed, equation 4.10 .06 may be expressed at a oonstant altitude as,

vhere:
$\nabla_{t a}-$ otandard day true epoed for ∇_{c} and given altitude
These equations are plotted in the sinal report as in Figures 4.10.5 and 4.10.6, for each major configuration. For reducing data, it should be noted thet at a given Mach number, weight, and altitude the teat and standard day epecific range are equal. The plote of V_{t} / W_{f} ve V_{C} are used as an aid to pilot technique aince it is eimpler to fly at a constant ∇_{c} than at a conetant V_{t}. It should be noted that in jet povered aircraft the epecific range increases with altitude; hovevor, if high enough altitudes or hoavy onough voights are flom, a value of $\mathrm{W} / \boldsymbol{\phi}_{\mathrm{a}} \mathrm{vill}$ be found that gives a max apecific range.

The effects of woight variations on specific range are of murh less magnitude for turbojet aircraft than for conventional aircraft of equal eize. This 1s because the best range conditiong are at about 0.5 Mach number or above, and the induced drag in this apeed range is a very amall percent of the total drag. heverthelese, veight variation can have a considerable percentage effect on turbojet range because of their inherent ahort range characteristice for a given aize. Typical veight offeots on range oan be eeen graphically in Figure 4.10.3 were the upecific range parameter is plotted va M for constant values of W/Oa. In this plot the sea levol standard veight effocta can be soen dirootiy, and the offeots of weight variation en epocific ranges at any altitude oan be readily ocmputed.

Aotual range can be oomputed with data from plote wich as Figures 4.10.5 and 4.10 .6 by assuming the Mach number be held oanotant and the weight preesure ratio to be held constant by a slow olimb. The range in this case is,
$R g=\binom{\nabla_{t}}{W_{f}} \quad W_{1} \quad 10\binom{W_{1}}{W_{2}}$
The noceseary rate of olimb to hold a oonetant woight-pressure ratio is,
$\frac{d H_{0}}{d t}-\frac{1.6 W_{f} T_{a}}{W_{1}}$
where:

$W_{f}=$ fuel flow, lboh hr T_{a} - tandard temperature (${ }^{\circ} \mathrm{K}$) $W_{1}=$ velght at etart of cruise	

Figure 4.10 .5
Uaual Roport Presentation of Turbojet Spocific Range Data

Figure 4.10.6
Ueual Report Presentation of
Turbojot Epecific Fange Data

mata ratocxion ourint (4.10.1)

For Fual Fiow Parmoter and Epeciflo Rango Callbration, Itribojet Alroraft

Hotia Thia data reduotion is a sequel to the Lovel Filght Pover Calibrations min Reduotion Outine 4.81.
(38)

Het,
gels/hr
(39) Met,

1be/her
(40)
$\frac{W_{s t}}{\delta_{a} \sqrt{\theta_{a t}}}$
Tost volumotrio fuel flow, fran flow moter or timed inoreinnty at etabilised fower condition.
thot fuol weight-fion (38) $\times 1 b / \mathrm{gal}$
Prol flow paramoter, (39) + (6) and (28)
(41) Plot (40) VE (31) as in Figure 4.10.1
(42) $\left(\frac{\mathbf{w}_{f t}}{\sigma_{s} v_{s t}}\right)_{v}$

Fual plow paramoter at otandard W / σ_{3}, from (41) and (33)
(43) $16, \sqrt{\theta_{a g}}$

Fran (5) and atandard altitude tables
(44) 888
mutionl air milon por poond, (12) \times (43) - (42)

(45) Plot (44) 30 (10) and (12)

Fisent Thrust Moaruromant Application to Depand Ist Cogfioient and Airgraft reficiener Dotermination

Whenever thruet moaeuring instrumentation is installed, sotual thruet deilvered may be couputed by the mothods of Chapter Three. In liou of tail pipo instrumentation the ongide manufacturer's 6 xpeoted performanoo onrves may be used to approzimate flight thruat. In thie oase valuen of $\overline{1} / \sqrt{e_{t 2}}$ and $P_{t 2} / P_{a}$, ram pressure ratio, mast be oalculated. since the ongine not thrunt equale the aircraft drag, it may bo oubstituted waserer drag 18 used in plotting, or it mas oimply be called drag. Equations 4.210 and 4.215 dofine the two baelo drag plots. In one plot drag is shown as a funotion of $\nabla_{t} \sqrt{\sigma}$. This plot is valid only for the weight and altituden at whioh it was flown. Figure 4.11 .1 shows a typical F_{n} Vo $\nabla_{t} \sqrt{O}$ plot.

Figare 4.11.1
Typical Deas or Eat Thruat ve Tquivalont Epeed P1ot

Tro other form of the dras plot are ohown in Figure 4.11.2, in thioh the thrugt parameter, P_{n} / P_{a} or Y_{n} / δ_{a}, is plotted vi the wight presome paramoter, W / P_{a} or $Y / 8_{a}$, and yoh momber.

Figure 4.11 .2
Two Form of Plotting the Level Flight Drag Data
The $\mathrm{F}_{\mathrm{n}} \mathrm{Ba}_{\mathrm{a}}$ vs $\mathrm{w} / \mathrm{s}_{\mathrm{a}}$ plot with constant Mach number paramotore may be derived by cross plotting as vas done in Sorption 4.9 to obtain $\pi / \sqrt{6_{a}} \mathrm{ve} \mathrm{W} / \mathrm{B}_{\mathrm{a}}$ for constant Mach number parameters. This plot is valuable in determining not thrust required for any altitude, weight, and aped.

When not thrust has bon determined, $\mathrm{CD}_{\mathrm{D}}, \mathrm{CDP}_{\mathrm{DP}}$, and "on are determined from values of C_{L}, P_{a}, M and the aircraft dimensions. The following equalities and ocontante are useful in these computations.
$F_{\mathrm{n}}=\mathbf{D}$

$C_{L}-\frac{295 H}{\sigma V_{t}{ }^{2} 8}=\frac{0,000 Y}{P_{a} H^{2} 8} \cdot \frac{0,009675}{H^{2} 8}$
$\theta=\frac{C_{L}{ }^{2}}{\pi R\left(C_{D}-C_{D P}\right)}$
$c_{D A}=\frac{c_{T}^{2}}{T A_{B}}$
HONE:

then $C_{D I}=0$
and $C_{D P}=C_{D}$
$C_{D P}=C_{D}-C_{D 1}$
With the above equalities constant C_{1} parameters may be o on
struoted es shown on Figure 4.112, from stile slide rule computations.
The intersections of C_{L} and $\pi / \sigma_{\text {a }}$ parameters may be used to compute O_{D} values and plot made es shown in Figure 4.11 .5.
where:

The $C_{L}{ }^{2}$ vo C_{D} plot vill be atraight line (Figure 4.11.3) an long as the incompreanible therry is ralid but will how break vhere the drag ourvee rise due to the offoct of Meh number.

P1gur 4.11.3
Mathod of Plotting Frag and IAft Coeffioiezt and Keh Mrabor Dita

Airplang offioionoy is, oasily oaloulated by wing the $C_{\text {pp }}$ valuo deifned by the point $\left(C_{I}^{2}-0\right)$ on the C_{L}^{2} va C_{D} plot. This is soccmplished by draying a otraight inn through the incomprealible pointe (low opeed) on tho $C_{T}{ }^{2} V_{8} C_{D}$ plot. Tho interseotion of this live at ($\left.C_{L}^{2}=0\right)$ deringe $O_{D P}$. In the inoompresaible rangs Dop in ocnatant but it inoreasea rapidis as mperaonio fiow is developed over the wing; honoe, a plot of CDP ve Man number a0 in Figure 4.11.4, will indicato the Mach mabre at wioh ocugreanibility effeote will be found. At highor altitudes (larger W/8t viven) CDP vill fhow an inowase from compressibility at lowor yach nuserm than required at low altitudes (rmallor W/Ge values). This illuatrates the faot that $C_{p p}$ in the comprenaible reage increagee with C_{L} or anglo of attack at eonetant Mah numbers.

Figure 4.11 .5
$C_{D} C_{I}$ Showing Critical Mach Ho. and Buffett Boundary

$$
4-45
$$

For Dotormaning Drag and Lift Cooffioiente and Airoraft Bfficisnoy

NOTE: This data reduction is a sequol to the Lovel Filght and Rango Data Reductions, 4.81 and 4.10.1

(46)	F_{n}	Ibs	Not thrast
(47)	∇_{0}	mote	Equivalent opeod, from CEART 8.3 (5) and (11)
(48)	Plot (46) ve (47) as in Figure 4.11 .1		
49 50 5		${ }^{168}$	Het thrust parameter, $(46) \rightarrow(6)$
(51)	A		Wing area, from alroraft specs
(52)	n^{2}		Aspect ratio, from aircraft apece
(53)	C_{D}		Total dras coofficient, $0.000675 \times$ (49) $+[(50) \times(52]$
(54)	CL_{L}		Lift $000 f f 1$ ient $0.000675 \times(25) ~ \leftarrow$ $850) \times(528$
(55)	$\mathrm{CL}^{2}{ }^{\text {a }}$ (53) ${ }^{\text {com (94) }}$		
(56)	Piot (55) va (53) as in Pigure 4.11.3		
(57)	CIP		Profile drag cooffioient, from oxtrapolation to $\mathrm{CL}^{2}=0$ of incompreanible portion of (56), Fiere 4.11.3
(58)	$\mathrm{C}_{\text {DI }}$ I Induoed drag o0efficiont, (53) - (57)		
(59)	0		Alrarast officienos factor (55) + (58) $\times(51) \times \pi]$
(60)	Plot (57) ve (11) as in Figure 4.11.4		

STANDARDIZATION OF JET LENEX FLGGM DAFA FOR THETET AUCMENTATION CONDITIOKS OR PAEIICULAB POVER LFTED SSTY NGS

Data standardization in the high thrust range of automaticeily cutitrolled engines, variable area $x \rho \pi i l o$ enfines, or for thruet augmentation conditions is not always amenable to the uso of elementary engine operaticn parametars such es $\mathrm{z} / \mathrm{N}_{\mathrm{a}}$. In theus cases varlous jot nozele positions cr particuler throttle eetinge ("normal". "military". "maximun"; vill all give different Ilight speeds at a constant $N / \sqrt{\theta_{Q}}$. For these conditions a plot such as Figure 4.83 vould be mesningless.

Test requirements will usually demend standari speed, altitude, and waigit data at a perticular throitle position (dotent), or rpo-jet temperatiare combination, or augmentation sotting. Standardization under these conditions may be accomplished by use of $\mathrm{F}_{\mathrm{n}} / \mathrm{B}_{\mathrm{a}}-\mathrm{W} / \mathrm{B}_{\mathrm{a}}$ - Mach No. plots as shown in Figure 4.11.2. The engine mafacturer's performance data will provide a meane of obtaining increrental thrust correction for exbiont (or inletj temperature variations at the given power settings. Aithough the manufacturer's actuà ongine thruet data ray be ineccurate the incremontal values obteined frim the elopes of hie data Nill provide suflicientiy accurate thrust correctione. If these net thrust corrections for ambient temperature varisitions (or any other nonstandard engine condition) are available, the following stepe will atandardize the flight epeeds and Mach No's. In conjunction with Pigure 4.11.2. If poseible. flight thrast measurement ahould be used to ovtain thie figure. The manifaciur cr's expected thrust data can be used for this plot without seriousiy impedring the accuracy of tandard ilight speed deta obtained by this method.
a. If test $W / 8_{a}$ valuas are sore than one (1) percent from average values, correct data to constant $W / \mathrm{g}_{\mathrm{a}}$ ralues as before.
b. Select weight and altitude desired at arerage $V / 8_{a}$ value. (This should not be more than $\pm 5000 \mathrm{ft}$. of test altitudes).
c. Determine $\varepsilon_{a_{s}}$ for elected altitude and

$$
\Delta t=t_{\mathbf{a}_{t}}-t_{\mathbf{a}_{\mathbf{a}}}
$$

d. Calculate $\Delta F_{n} / \theta_{a}$ for Δt_{a} of (c) above and add to teet value of $F_{\mathrm{n}} / \mathrm{b}_{\mathrm{a}}$ for the given thruet aetting.
o. On Figure 4.11.2, ueing corrected $F_{n} / 6_{a}$, establish M for standard altitude on mean W / θ_{a} curve or, using $\Delta F_{n} / \beta_{a}$ vaiues, move test point pares llel to w / θ_{a} curve to standard $F_{n} / 6_{a}$ and A_{0}

The final standardised plot for a given veight will appear as in Pigure 4.12.1.

P1gure 4.17.0i
Iffscta of non-tiandare temperature may vo coprated as before and an ghowa in Figure 4.12.2.

Mgure 4.12,2

ATra 6273
ount 4.45
(

AT: 6273
OMCP 4.42

Cintir 4.72

CRIE 4.72

CRAPTMR FIV

Eecrion 5.1

Bate of clite Pranatern - Dorinitigo

An airoraft olinbe beange the powr beins developed is erenter than the pomer

 oraft as shown in Ficure 5.21.

Hgur 5.11
Veotor Proeentation for Clinbing Airoraft
Iron thle 116me,

$$
\begin{aligned}
& \text { I }=\$ 000 \theta
\end{aligned}
$$

$$
\begin{align*}
& P_{m}{ }^{7}-D+W \text { anc } \\
& 7 \sin 0 \\
& -\frac{1 n}{t}=\frac{T_{n a} V-D T}{V} \tag{5.101}\\
& \frac{d h}{d t}-33,000 \frac{\left(T H P_{B}-T H P_{r}\right)}{W} \tag{5.10}
\end{align*}
$$

nemere:

$$
\begin{aligned}
& L=115 t \text { farce (Jbs) } \\
& W=\text { atruraft grose madeht (Ibs) } \\
& \theta=\text { alisb angle } \\
& \text { Pap }=\text { not thruot avallable (lbs) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { requared } \\
& \nabla=\text { alroraft veloaity on olinh path (It/aio) } \\
& \mathrm{dh} / \mathrm{dt}=\text { tape } 110 \mathrm{cete} \text { of alimb (Ithan) } \\
& \text { TEPa }=\frac{\text { Mn } V}{33,000}=\text { available thrast hoxmpower }
\end{aligned}
$$

HOTE: Equations 5.101 and 5.102 aro based on tha asmuption thent for
mall valnes of $0,0^{\circ}-20$; the lift fonse is equal to the gross
voighto The case of the lave climb angle will be aisousaed later.
 olfibing velocity.

T18ure 5.12
Typhenl Ponar drailable and Power Rogutred corves

Certain aorodynamic considerations, assuming parabolic variation of C_{D} and C_{1}, are used in developing the rate of elimb, induced power, and parasite power ralationahips.
$D=C_{D p q S}+C_{D 1} q S$
$D=C_{D P Q S}+\left(\frac{H}{q S}\right)^{2}{ }^{2} R_{0}$
where:I - W
$D=C_{D p} q S+\left(\frac{H \cos \theta}{q S}\right)^{2} \frac{q S}{\pi / R \theta}$
where:l $=W \cos \theta$
Substituting $0.7 \mathrm{~Pa}_{\mathrm{g}} \mathrm{R}^{2}$ for q ,

$$
\begin{equation*}
D=C_{D P} k_{2} P_{a} M^{2}+\frac{\hat{H}^{2}}{P_{a^{2}} M^{2} k_{2}} \tag{5.104}
\end{equation*}
$$

where: $\mathrm{L}=\mathrm{W}$
uberes L-U con -

$$
L=U \cos \theta
$$

$$
5 \cos 2
$$

Dividing by Fa_{a}, the ambient preesure, in equation 5.10K,

$$
\begin{equation*}
\frac{D_{a}}{P_{a}} C_{D p} z_{1} H^{2}+\frac{y^{2}}{P_{a}^{2} y^{2} z_{2}} \tag{5.106}
\end{equation*}
$$

nevere:

It bas been abown thent,
where $F_{n r}=$ thrust required to overcome Drag

$$
\begin{aligned}
& \text { H - M1edt Mach numer } \\
& C_{D P}=f\left(M \text { and } W / P_{a}\right) \\
& P_{a}=\text { atmospheric presauce (} 1 \mathrm{bs} / 2 \mathrm{t}^{2} \text {) } \\
& \mathrm{m}=0.7 s_{2}\left(\mathrm{It}^{2}\right) \\
& 12-2.20^{2} \text { (} \mathrm{I}^{2} \text {) } \\
& \text { b- ving apan (rt) }
\end{aligned}
$$

$\boldsymbol{\sigma}$
madine by $P_{a} \sqrt{I_{a}}$,

$$
\begin{align*}
& \frac{T P_{r}}{P_{a} \sqrt{Y_{a}}}=\frac{D V}{33,000 P_{a} \sqrt{P_{a}}}-\frac{P_{p_{r}} V}{33,000 P_{a} \sqrt{F_{a}}} \tag{5.107}\\
& \frac{P_{a}}{P_{a} \sqrt{P_{a}}}=\frac{P_{m a} \nabla}{33,000 P_{a} \sqrt{P_{a}}} \tag{5.108}
\end{align*}
$$

Le show in Chapter Ono,

$$
\frac{\frac{T}{\sqrt{T_{a}}}}{n}=n \times \text { cosatant }
$$

Uning thie relaticonhip, equation 5.107 and 5.108 an bo mitten in the form,
sabetitutine oquation 5.109 in 5.106,
itherefore,

Froce onedio pexformanoe emiswio,

$$
\frac{P_{B}}{P_{a} V_{B}} \cdot \frac{P_{B}}{P_{a} V_{2}}\left(\eta_{p}\right)
$$

thervi $\quad \eta_{p}=$ Fropellor effiolenes

ATER 6273

Equation 5.112 appliee to both propollor driven airoraft and trubojot airoraft, willo equation 5.113 apyliea to twrbojet alroraft only.

Fran the funotional poner and dreg equation the rete of ollab funotional parantere are derived.

Fron the rate of olins oquation,

$$
\begin{equation*}
\frac{d n}{d t}=33,000 \frac{\left(2 \pi P_{a}-T i P_{r}\right)}{U} \tag{5.102}
\end{equation*}
$$

wie nay be dirided by $\frac{P_{A}}{P_{A}}$ and $\sqrt{I_{i}}$, thon,

$$
\begin{equation*}
\frac{\frac{d}{d t}}{\sqrt{L_{a}}}=33,000 \quad \frac{P_{0}}{V}\left(\frac{\pi: P_{8}}{P_{a} \sqrt{T_{a}}}-\frac{T P_{r}}{P_{A} V}\right) \tag{5.114}
\end{equation*}
$$

Fran equation 5.112, 5.213 and 5.114,

$$
\begin{align*}
& \frac{d h}{d t}=1\left(\frac{D}{\sqrt{L}}, M, \frac{Y}{P_{0}}\right) \quad \text { tmbojet } \tag{5.116}\\
& \frac{\frac{d h}{d t}}{\sqrt{L_{a}}}=1\left(\frac{F_{n}}{F_{s}}, n, \frac{V_{0}}{F_{0}}\right) \quad \text { trobojet } \tag{5.117}
\end{align*}
$$

Termerame Feriation correotion to Rate of cilib Data

As teat day and standard day 114 ghts are seswed to be at the same preasore altitwde, it is oniy noceseary to rabe atmogphoric pexformanoe ocrreotions for temparatrure differmoses. The ocrreoted presoure altitrode at which the atraraft P1es is denoted by the aybol, E_{0}, and the tapeline altitude by the symbol, h. The relationship between tipeline and pressure altitude increments is given by

$$
\begin{equation*}
\frac{d h}{d A_{0}}=\frac{P_{t}}{\mu_{t}}=\frac{I_{a t}}{I_{t}} \text { for }\left(P_{a t}=P_{a t}\right) \tag{5,201}
\end{equation*}
$$

wheres
$P_{s}=$ Density for which instrement is callibrated - atandand densits at the pressure altitude
$P_{t}=$ Density at test pressure eltitude
$T_{a s}$ = Standard temperature at the presoure altitode
Int : Test temperature at the pressure altitude
Thon,

$$
\begin{equation*}
\frac{d h}{d t}=\left(\frac{d B_{0}}{d t}\right)\left(\frac{T_{n t}}{T_{a s}}\right)=\text { tapeline rate of climb at test true speed } \tag{5,202}
\end{equation*}
$$

In the paremotore of equations containing Ia; Int mo be mibertitorted. Then,

$$
\frac{d h / a t}{\sqrt{I_{a t}}} \sqrt{T_{a x}}=B / C=\text { tape1spe rate of alich at standard dar troe opeed. }
$$

10n, FTral equation 5.202,

In equation $5.115,5.176$ and 5.117 it 18 seon that, for a constant M and W / Pa, the rate of ollsb paraioter varies with the powar paramenere,

As allabs ant flow at constant spa in turbojots and at constent spemailould pressure schedalen in propeller driven ajraraft, tenperatwe variationa from test conditions vill canse obanges in the valuo of the rate of clisib paraneter. this rate of alinb ineremat for temperature offects on power is ealled $\Delta \mathbb{R} / \mathrm{C}_{1}$.

$$
\begin{equation*}
\Delta R / c_{1}=\Delta\left(\frac{\frac{d b}{d t}}{V_{r_{a t}}}\right) V^{T_{\mathrm{at}}} \tag{5.204}
\end{equation*}
$$

From equation 5.101,

$$
\Delta\left(\frac{\frac{d b}{d t}}{\sqrt{I_{a t}}}\right) V^{T_{a c}}-\Delta\left[\frac{101.3 V_{t t}\left(F_{n a}-D\right)}{V_{t}}\right] \quad V_{a s}=\Delta T_{\mathrm{Da}}\left(\frac{101.3 \nabla_{t t} V_{a t}}{V_{t} \sqrt{T_{a t}}}\right)_{(5.205)}
$$

where:

$$
\begin{aligned}
& \nabla_{t t} \text { - teat airoraft cliab true epeod (knots) } \\
& \Delta F_{F_{t a}}=\Delta\left(F_{\mathrm{na}}-D\right), D \text { assumed constant } \\
& \text { - tsot woight }
\end{aligned}
$$

In tarmy of Mach number and ($\mathrm{F}_{\mathrm{na}} / \delta_{\mathrm{a}}$),

$$
\begin{equation*}
\frac{\Delta R / C_{1}}{\Delta\left(F_{\mathrm{Ba}} / \delta_{a}\right)}=\frac{251.9 \mathrm{MP} P_{a} \sqrt{T_{a 0}}}{W_{t}} \text { (tarbojot airoraft) } \tag{5.206}
\end{equation*}
$$

∞

$$
\frac{\Delta R / C_{1}}{n \Delta\left(I_{n} / \delta_{a}\right)}=\frac{3946 \sqrt{S_{B R}}}{u_{t} / \delta_{a}}
$$

There: $\delta_{a}=P_{a}$ (1noheo IB)/29.92
yran equation 5.108,

$$
\left.\Delta R / C_{1}=\frac{33,000}{W_{t}}\left(\mathrm{THP}_{a 0}-T H P_{a t} \sqrt{\frac{T_{a g}}{T_{a t}}}\right) \begin{array}{c}
\text { (rociproonting } \tag{5.208}\\
\text { ongine aif rraft }
\end{array}\right) .
$$

Fram reoiproonting engine powr theory the effecte of terperature on power avaliable are an effeot on the carburetor temperature and the offeot on manifold prename.

From Chapter swo,

$$
\begin{equation*}
\text { HBP }_{\text {ag }} \equiv \text { BBPat } \sqrt{\frac{T_{a t}}{T_{a t}}} \tag{2.201}
\end{equation*}
$$

subetituting equation 2.201 in equation 5.208,

$$
\begin{equation*}
\Delta R / C_{1}=\frac{33,000 B H i P_{a s}}{W_{t}}\left(1-\frac{T_{a s}}{T_{a t}}\right) n_{p} \tag{5.209}
\end{equation*}
$$

or, in terms of test brake horsepower

And above critical altitude equation 5.208 becomes

$$
\begin{equation*}
\Delta R / C_{1}=\frac{33,000 B H F_{a t}}{W_{t}}\left[\sqrt{\frac{T_{a t}}{T_{a s}}}+\frac{1 W_{s}}{A T_{t}}-1-\sqrt{\frac{T_{a s}}{T_{a t}}}\right] \eta_{p} \tag{5.211}
\end{equation*}
$$

whore:

$$
\begin{aligned}
& \text { WP } P_{t} \text { test day manfold preaeuro }
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{p}=\text { propelior efficiency, average value, } 0.83
\end{aligned}
$$

Equation 5.211 in plottod in CEART 3.21 for uge in deternining $\Delta R / C_{1}$ for reciproonting ongine alroxart, from raluen of $B H P_{a t}, T_{a f} / T_{a t}$, and $N P_{t} / E_{s}$. The ranfold gresscre correction for wir only is epplied ist the chart fithort introdusing any error of mgaitude in cases of mirtwe blowerg. Fainon of Hippe, tho porer developed during the cilmb, mej bo deterninod from torememater raedinge or from engine porar oharts.

Bquation 5.206 and 5.207 , plotwed in CEABLH 5.22 and 5.23 , are naed to

 ceseribod in Ganptor Three and 1ilnatreted in Figwe 5.21 below.

H1gare 5.21
 Fate of C21nt Corxoctiong

Heloht Vrisition Correction to Rate of Climb Data

An aircreft rate of olimb at eomg given grose wight may be oorrectes minematioally to givo the rate of cilmb at some other grose roight. This mathemetios rete of clink correction for velght variation aesume that all atmonpheric, velooity, and power conditious aro tho samo for botb grose wolforte. For this reason, roight corrections are applied to otandard day olimb dete. Thif mothod fwether inplies that the effects of weight changes on the ecrpremelbility drae are nogligible. This latter agmuption is not generilly valid for 1liget Mach numbers abore 0.6. From equation 5.101,

$$
\begin{equation*}
F_{\mathrm{Da}}=\left(\frac{d h}{d t}\right)\left(\frac{H}{\nabla}\right)+D \tag{5.301}
\end{equation*}
$$

In serme of the dreg or turust required, equation 5.104 ,

$$
\begin{equation*}
P_{n a}=\left(\frac{d h}{d t}\right)\left(\frac{H}{\nabla}\right)+C_{D p} k_{1} P_{A} M^{2}+\frac{W^{2}}{P_{g} H^{2} k_{2}} \tag{5.300}
\end{equation*}
$$

meferentiating, Fith W and $d h / d t$ the only variables,

$$
\begin{equation*}
d\left(\frac{d h}{d t}\right)=-\left[\left(\frac{d h}{d t}\right) \frac{d H}{W}+\frac{2 V d H}{P_{1} V^{2} H_{2}}\right] \tag{5.303}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \frac{d h}{d t}=R / C+\Delta R / C_{2}=\left[\left(\frac{d H_{q}}{d t} \sqrt{\frac{T_{a t}}{T_{a g}}}\right)+\Delta R / C_{1}\right], r t / \min \\
& d V=\left(W-W_{t}\right)=\Delta W, 1 b_{0} \\
& V=11 \text { ght rolooity, }^{\mathrm{It}} / \mathrm{min}
\end{aligned}
$$

$$
\begin{aligned}
& z_{2}=155.6 \mathrm{~b}^{2} \mathrm{o}\left(\mathrm{rt}^{2}\right)
\end{aligned}
$$

Then,

$$
\begin{align*}
& \frac{\Delta R / C_{2}}{\Delta W}=-\frac{(d \Delta / d t)}{W} \tag{5.304}\\
& \frac{\Delta Z / C_{3}}{\Delta W}=-\frac{50.65 \sqrt{I_{a}}}{Z_{a} M b^{2}} \tag{5.305}
\end{align*}
$$

Talven of $\left(\Delta R / C_{j} V / \Delta W\right.$ are onaily ocmputod from H_{t} and $d h / d t$. Valvon of $\left(\Delta R / C_{3}\right) / \Delta W$ mat be foud fron CFART 5.31 as a function of preaexre altitude, Mach number and ring apan. The total voight corrootion to rate of olizb 1e,

$$
\begin{equation*}
\Delta R / C_{2}+\Delta R / C_{3}=-\left(\frac{\Delta R / C_{2}}{\Delta W}+\frac{\Delta R / C_{3}}{\Delta H}\right) \Delta H \tag{5.306}
\end{equation*}
$$

Whare the angle of cllem is not negligible, $\theta>20^{\circ}$; an orror in $\Delta R / C_{3}$ of ten percent or larger will be introduced since the normal load factor departs significantly from lg . In that case the induced drag may be set equal to

$$
\frac{(n W)^{2}}{\pi \mathbb{R} e(q S)}
$$

and the following equation derived:

$$
\Delta R / C_{3}=\frac{25.36 \sqrt{T_{a s}}}{P_{a s} b^{b^{2} e M}}\left[\frac{n_{t}^{2} w_{t}^{2} \frac{\delta_{a s}}{\delta_{a t}}-n_{s}^{2} w_{s}^{2}}{W_{s}}\right]
$$

Vortiosi Hind Gradiont Correotion to Rate of Clinh

An airoraft olimbing through a rertioal find-relooity gradiont ill oxparience a horizomtal acceleration if the relative find direction io megative and a horizcotal deceleration if the relative wind is poaitivo.

$$
\begin{equation*}
a^{v}=\frac{d \nabla_{\nabla}}{d t}=\left(\frac{d \nabla_{T}}{d h} \lambda \frac{d h}{d t}\right)_{a} \tag{5.401}
\end{equation*}
$$

vierv:

$$
a_{v}=\text { horizortal asceleration }
$$

$\frac{d \nabla_{V}}{d h}=$ roitical Find-volooity gradient, (t) headvind, (-) tailvind

$$
\left(\frac{d h}{d t}\right)_{a}=\text { acoelorsted rato of ellab }
$$

The man of the airoraft and this accoleration force is oonverted into a rate of olish increment if the olinib path apeed is congidered conetant.

Asoundag oull climb angles, the And gradint Femulte in a ohanging olimb peth opeed rulative to the earth. Thie remilty in a kiontio operes incrament for the aircraft wioh mat bo balanoed by a potential overea inorwingt if the

$$
\left(\frac{\nabla}{s}\right)^{T}\left(\frac{d \nabla}{d t}\right)+\nabla\left(\frac{d g}{d t}\right)==0
$$

From thie equation,

$$
\begin{align*}
& \frac{V}{8} \frac{\nabla_{T}}{d h}\left(\frac{d h}{d t}\right) e-\frac{H}{\nabla} \Delta\left(\frac{d h}{d t}\right) \\
& \Delta\left(\frac{d h}{d t}\right)=-\frac{Y}{B} \quad \frac{d \nabla}{d h}\left(\frac{d h}{d t}\right) a \tag{5.408}
\end{align*}
$$

Ben the maocelerated rato of olimb 1s,

$$
\begin{align*}
& \frac{d h}{d t}=\left(\frac{d h}{d t}\right)_{0}-\frac{T}{8} \frac{d V_{1}}{d h}\left(\frac{d h}{d t}\right) a \\
& \frac{d h}{d t}-\left(\frac{d h}{d t}\right) \tag{5.405}
\end{align*}
$$

Values of the exreotion factor

$$
\left(1-.000089 \nabla \frac{d \nabla_{\nabla}}{d h}\right)
$$

whers:

$$
\frac{d \nabla_{V}}{d h}=\frac{\text { moot }}{2000 \mathrm{ft}}
$$

are plotted in CHARX 5.41 at the ond of this chapter for velues of $\nabla_{0}, d \nabla_{v} / \mathrm{dh}$, and presaure sltitude.

Climb Path Aooeloration Corrootion to Pate of Climb Data

An airoraft olimbing on a tandard day at a firod calibrated air apoed mat sccelerate bebare of stmophoric density change with altitude. Thie acceleration of the aircraft mase absorbe acme of the thrugt available, and the rate of clisb during theae condition is lees than the unaccolerated rate of climb.

The force abeorbed 10,

$$
F_{a}=\frac{W}{B} \quad \frac{d V}{d t}=\frac{U}{G} \quad \frac{d V}{d D} \quad\left(\frac{d h}{d t}\right)_{a}
$$

and, from equation (5.101),

$$
\Delta\left(\frac{d h}{d t}\right)=\frac{V F_{g}}{W}=\frac{V}{E} \quad \frac{d V}{d \boldsymbol{L}} \quad\left(\frac{d h}{d t}\right)_{a}
$$

Then,
or

$$
\frac{d h}{d t}=\left(\frac{d h}{d t}\right)_{a}+\frac{V}{g} \frac{d V}{d b}\left(\frac{d h}{d t}\right)_{a}
$$

$$
\begin{equation*}
\frac{d h}{d t}=\left(\frac{d h}{d t}\right)_{0} \quad\left(1+\frac{V}{6} \frac{d V}{d h}\right) \tag{5.501}
\end{equation*}
$$

vhere:

$$
\begin{aligned}
& F_{a}=\text { the force absorbed in acoelerating } \\
& \frac{d b}{d t}=t \text { macoolerated ollab } \\
& \left(\frac{41}{d t}\right)_{a}=t b e 000 \text { lerated olsmb } \\
& \nabla=\text { the troe olimb path selooits } \\
& \Delta\left(\frac{d h}{d t}\right)=\text { rate of olimb absorbed in acoelersting }
\end{aligned}
$$

In term of Malk mabor the oorreotion factor in equation 5.501 beocare,

$$
\begin{equation*}
1+\frac{I}{6} \frac{d V}{d h}=\frac{M^{2} r R}{2} \frac{d T}{d h}+M C R T \quad\left(\frac{d M}{d h}\right)+1 \tag{5.500}
\end{equation*}
$$

For a ocertant troe olinb epeed the ebove lactor hac a valo of ons. Por a ocortant Moh meber clisb (deoeleration) the faotor has value of ($1-0.133 \mathrm{~N}^{2}$) up to the inothermal altitode above waloh the faotor in equal to one. For up mocolerreing olim oandition the factor tabe the form,

$$
\begin{equation*}
1+\frac{Y}{E} \frac{d Y}{d h}=\frac{\left(1+.2 x^{2}\right)^{3.5}-1}{\left(1+.2 M^{2}\right)^{2.5}}-0.133 x^{2}+\frac{\nabla_{c}}{8 \sigma}\left(\frac{1+.2 x^{2} S L}{1+.2 N^{2}}\right)^{2.5} \frac{d \nabla_{c}}{d h}+1 \tag{5.503}
\end{equation*}
$$

Bquation 5.503 is plotted in CEARTS $5.51,5.52,5.53$ and 5.54 in terme of ∇_{c}. $P_{a,} M, V_{t} d V_{t} / d h$, and $d \nabla_{c} / d h$. Chart 5.51 contalns the first two right hand torne and is used for constant ∇_{c} climbs. Chart 5.52 containe the extreme ifght hand term and is an additive factor for a changing ∇_{c}. Chart 5.53 presents the first two right hand terms as a function of M. Chart 5.54 presents the function in terme of ∇_{t} and $d \nabla_{t} / d h$.

During a climb to altitule (check climb) in jet type aircraft, the indicated climb speed is decreased w ith increasing altitude. This means that $d V_{c} / \mathrm{dh}_{\mathrm{i}}$ in oquation 5.503 is negative and, if large enough, way balance the other terma in the oquation. In reciprocating engine alrcraft the indicated speed is held constant, until the critical alt! tude for the engine is reached, and then is decreased. Gharte 5.51 and 5.52 may be used to determine the bleed-off raterequired fof a constant climb true speed (zero acceleration factoz). During sautootis climbs in jet or conventional aircraft the calibrated speei is held constant over an increment or altitude. In these cases it may be desirable to determine the uneccelerated rate of climb that would be obtained under the aame conditions at a constant true climbing speed as oight be the case in a check climb. This may be accomplishod using CHAEP 5.51 or 5.53 for the cilmb V_{c} and H_{c} or $M_{0}\left(d V_{c} / d n=0\right)$. The factor 18 used as in equation 5.502.

Since equation 5.503 is plotted for standard day conditiona it ahould be applicd to the tapeline rate of cilab at atendard day true speod. This tapeline rate of climb has been defined as.

$$
R / C=\frac{d E_{c}}{d t} \sqrt{\frac{\underline{S}_{a_{t}}}{T_{a_{a}}}}
$$

Tor en accelorating cilmbing aircraft requiring a power os thrast correction for temperature variation, the usual power correction is not all available to correct the R / C defined abore sizce changing H / C changes the acceleration thruet required ar hown on the proceding page.

where:
$(\Delta \mathbb{Z} / C)_{\text {a }}=$ rete of clisb increment for tenperature-pover correction
so the accelerated rate of clinb. $\left(\frac{d H_{c}}{d t} \quad \wedge \sqrt{\frac{T_{a_{t}}}{I_{i_{m}}}}\right)_{E}$
8iediarly, for an accelerating cliablag aircraft reguiring an induned drag veight corfection to rate of clisb at a constant air speed ard thriet or rower. an increased velght (induced drag) not only abeorbs more of the oxcese thrust and reduces rate of climb, but it also resulte in less thrust beling raquired for acceloration (roduced dB/dt) and ome increase in rate of olimb. In this case the total offect of cliab acceleration on the induced drag veight correction is.

$$
\begin{equation*}
\left(\Delta B / C_{3}\right)_{E}=\frac{\Delta R / C_{3}}{\left(1+\frac{I}{G} \frac{d T}{d h}\right)} \tag{5.505}
\end{equation*}
$$

Tor jot porered airecraft, the best rate of climb is at approdmatoly a constant true speed. For reciprocating engine aircraft, the beat rate of climb is uaunily found in an acoelerating olimb condition.

APPLICATIOES OF THE ACCBLERATION FACTOR TO SAN-TOOTH AND CHECK CLIMBS

The acceleration factor is applied to a saw-tooth rate-of-climb ($\nabla_{c}=$ const.) to alaulate cbeck clipb data under identical conditions of standard thrist, altitude, weigtt, and standard speed. During chock climbs at bset climbing speeds soos acceleration (\pm) may be ovident; in these cases, the acceleration factor is appied only to the thrust and induced drag corrections. These two applications of the acceleration factor in climbing will be clarified by the equation below.

Basically, for the sav-tooth climb,

$$
\begin{equation*}
B C_{t}=B C_{t a} \times \Delta \tag{5.506}
\end{equation*}
$$

where
Bc $_{t}$: tent tapeline rate-of-clisb at atandard day speed, no
acceleration alonc flight path.
$B c_{t a}=\frac{d Z_{c}}{d t} \sqrt{\frac{T_{a_{t}}}{G_{a_{e}}}} \begin{array}{r}\text { test tapeline rate-of-climb at standard day } \\ \text { sped, vith acceleration along cjivb path. }\end{array}$
$A_{f}=$ atandard atmophere climb acceleratione factor at tandard das apeed $\left(1+\frac{V}{6} \frac{d V}{d h}\right)$

Duriag a sav-tooth cliab at constent ∇_{c}, the aircraft is accelernting and
where:
Ro. s tepeline rate-of-climb at tendard day speed thrust, and woight. no acceleration along flight path.
$\Delta R c_{1 a}=\frac{\Delta B_{1}}{A_{f}}=\begin{gathered}\text { thruat correction to rate-of-climb during flight path } \\ \text { accoleration of standard day peed. }\end{gathered}$
$\Delta B_{3}=\frac{\Delta B c_{3}}{A_{1}}=\begin{gathered}\text { induced drac rate-oi-climb correction for veight } \\ \text { variation Juring fight peth accelergtion at }\end{gathered}$ standarid day speod.

With equation 5.506 and these definitions, equation 5.507 can be put in another form,

$$
\begin{equation*}
R c_{1}=B c_{t}+\Delta R c_{1}+\frac{\Delta Y}{V}\left(R c_{t}+\Delta R c_{1}\right)+\Delta R c_{3} \tag{5.508}
\end{equation*}
$$

A plot of Kc_{g} קs $\nabla \mathrm{t}_{\mathrm{g}}$ defines check climb, rate-of-climb ralues for siandard conditions except that the speeds for meximum rate-of-climb may result in some accoleration with increasing altitude. This will be imnediately apparent from the plot mentioned above. From this same plot, the acceleration factor deta ($d \nabla_{t} / \mathrm{dh}^{2}$ and $\nabla_{t g}$) for the check climb condition may be determined in the neighborhood of marimum rate-cf-climb. The best climb points may then be readjusted to more exactly simulate actusl check climb data. This le done by equation 5.509 .

$$
\begin{equation*}
\text { Es check climb }=R c_{s} / A_{f} \text { check climb } \tag{5.509}
\end{equation*}
$$

Standardizing on actial check cilmb requires a alightly different use of the acceleration factor, beceuse any acceleration existing is comion to both the test and standard day climbs. For this condition, equations 5.507 and 5.509 are combined.

$$
\begin{equation*}
\text { chock climb } \mathrm{Kc}_{3}=R c_{t a}+\Delta R c_{1 a}+\frac{\Delta V}{V}\left(R c_{t a}+\Delta R c_{1 a}\right)+\Delta R c_{3 a} \tag{5.510}
\end{equation*}
$$

Por cliabs at constant ∇_{c} the acceleration factor is determined from charts 5.51 or 5.53 . For plotted, zero acceleration, saw-tooth data, and for chack climb data, the acceleration factor is best determined from the change of atandard true epeed uith altitude and chart 5.54. Chart 5.52 is intended to be used only to determine the necescary decay of ∇_{c} with altitude to establish a zero acceleration. It hould be noted that chart 5.51 is plotted for atandard altitude data. This means that a tesperature lapse rate of $-2^{\circ} \mathrm{C}$ per chousand feet is assumd below the fiothermal altitude. Generally, under test conditions up to altitudes of $30,000 \mathrm{ft}$., this etandard lapes rate is realized approximately. The offoct on Af of temperature lapse rate can be seen on chart 5.53. The engineor should check all saw-tooth data for temperature inversions which greatly alter the standard lapse rate, but he should be especially alert on saw-tooth data obtained above $30,000 \mathrm{ft}$. The two curves on chart 5.53 may be used to interpolate for test teuperacure lapee rates betweon -2° and zoro to be appliod to oquations 5.506 and 5.507 in place of A as defined.

Temperature Bffects on Fued Consumption and Weink During Cilmb

In making a check climb from take-off to ceiling altitude, it is necessary to give consideration to fiel consumption variaition between test day and standard iay. This temperature variation may result in an appreciable and increasing difforence in test and standard day grose velghts as the climb progressea necesaitating A conversion to a rate of climb increment by the methode orevionaly Anscribed. If the temperse ture difference if not more than $10^{\circ} \mathrm{C}$, this fuelwoight rate of cilmb correction is negligible. In thig correction, the as sumption is made that the fuel consumption rate is constant at a particular time and power settizg irrergective of the rete of climb variation resulting frem atmospheric temerature varintion from standard. This assumption is also a valid approximstion for climbe cond acted at pover settings varying as much as five percer.t.

One method of determining the difference in fuel weight used because of tearorature effects is by plotting and correcting for teuperature the fuel rate of cirisumplicn.
a. Plot fuel used ve time.
b. Plot fuel rate vs altitude
c. Correct fuel rate ve altitude plot to standard day fuel rate at 8 tandard day power conditions by use of engine manufacturer's performance data.
d. Integrate power corrected rate of cllmb data and plot tentative atandard day time ∇ altitude.

- Plot corrected fuel rate vs corrected time to climb to altitude.

1. Integrate plot "e" and obtein correctel fuel used $\nabla 8$ time.
2. Determine fuel weight increment at each altitude from plots "a" and "f".
h. Make $\Delta R / C_{2}$ and $\Delta R / C_{3}$ corrections for welght difference to ($R / C+\Delta R / C_{1}$). This is the final corrected rate of climb.

> A.-Fuel Used vs Tims
> (Test Temp.)
> B.-Altitude vs Time to Climb
> (Test Temp.)
> C.-Altitude vs Time to Climb
> (Standard Temp.)

Figure 5.61
Metnod of Approxiontine a Rate of Climb Weight Correction for Variation in Fuel Used on Test and Standard Days

This sate correction may be approximated by ploting the data as shown in Figure 5.61 and by making the assumption (based on actual climb data) that the fuel used ve time plot for the test temperature and power is very nearly icentical to thet for the standard temperature and power.

SRECTION 5.7
potermination of Best Rate or
Cilmb and Beat Climbing Speed

SAWTOOTH MEIHOD

One mothod of oitaining climb data is the sawtooth olimb. This name is derived from the barograph trace resulting from a aeries of ohort time climbs through the eam preseure sititude. Those climise are ande at different indicatod olimbing opesds from a point a littio below the teat altitude to a point a little above it. By plotting the reaulting rater of climb for the various altitudes and air apeede, as ohown in Figaro 5.71, the beat rate of climb and beat ollmbing veloeity will be apparent for all altituder.

Figuro 5.71
Typical Bawtooth Climb Plot
Saxtooth cilmby are made at the same power settinge and aircraft configurations that will be ueed in the continuous or oheok olimbe. The eaytooth procedure is to olimb through the altitide inoromont for a poriod of aboat one minute st each of the various opeeds or Mach numbers eeleoted to bracket the beat rate of climb. In addition, the stalling point and high apeod point for level unaccelerated flight st the climb altitude are plotted to compiote the ourves. Buch sawtooth ollinb point is correoted to the grome roight that rould be obtainod by olimbing at olimb porer eotting fram a atandaxd Eroes weight take off to the tegt altitude. gavtooth olimbare ar oorrected for temperatura and woight variationg by the mothode indieated proviounly. For jet aircraft the data should be corrected to zero acceleration to simiato check climb data.

ACCTIBRATIOS METEOD FOR RATE OF CLIMB AND OPTIMSM CLIMB PATE BTALUATI ON

For alrcraft haring very large rates of climb and fuel consumption and a ilmited fuel apply, the savtooth method may be difificult to fly accurately and may be exceseively time consuming for complete results. In these cases the level flight acceleration method may be applied to the determination of climb data. In addition, vertical wind gradiente do not affect B / C data from level accelerations.

Consider the acceleratiog aircraft in level flight. The total anergy of the aircraft ia,

$$
\begin{align*}
& E=V h+\frac{V \nabla^{2}}{2 g} \tag{5.701}\\
& \frac{E}{V}=h+\frac{\nabla^{2}}{2 g} \tag{5.702}
\end{align*}
$$

where:

```
F = total energ (ft-lbs) V = true velocity (ft/sec)
V agross volght (lbs) G = accoleration of gravity
h = tapeline altitude (ft) 32.174 (ft/gecc)
```

Differentiating equation 5.702. (includiag h to allow for ajtimeter position error)

$$
\begin{equation*}
\frac{d T}{V}=\frac{\nabla d V}{6}+d h \tag{5.703}
\end{equation*}
$$

Dividing by dt.

$$
\begin{equation*}
\frac{d F}{d t} \frac{1}{V}=\frac{Y}{E} \frac{d V}{d t}+\frac{d h}{d t} \tag{5.704}
\end{equation*}
$$

The force arallable to accolarate the aircraft is.

$$
\left(I_{n_{2}}-D\right)=I_{n_{e}}-I_{n_{r}}=I_{n_{0}}=\text { Ixcess pet thruet }
$$

Then,

$$
\begin{equation*}
J_{n_{0}}=\frac{Y}{E} \frac{d y}{d t}+\frac{Y}{V} \frac{d h}{d t} \tag{5,705}
\end{equation*}
$$

Fromequation 5.101,

$$
\begin{equation*}
B / C=\frac{\nabla I_{n}}{V} \tag{5.706}
\end{equation*}
$$

Combiniag equations 5.706. 5.704, and 5.705,

$$
\begin{equation*}
B / C=\frac{d P}{d t} \frac{I}{V}=\frac{I}{C} \frac{d Y}{d t}+\frac{d h}{d t} \tag{5.707}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{s} / \mathrm{c}=\mathrm{st} / \mathrm{sec} \\
& \mathrm{dt}=\mathrm{second}
\end{aligned}
$$

By plotting the variable, ∇^{2} in equation 5.702 agains t time, the rate of change of the total energy may be obtained. From equation 5.706 it is seen that the point of maxisum slope of this curve is at the value of ∇^{2} correnponding to ∇ for maximum rete of climb. Thas been assumed constont. In knots, equation 5.702 becomes,

$$
\begin{equation*}
\frac{\nabla^{2}}{2 g}=0.0443 \nabla_{t}^{2} \text { knots } \tag{5.708}
\end{equation*}
$$

From a plot of $0.0443 \nabla^{2}$ knote $v e$ time in minutes and $\nabla_{1 c}$ and $H_{1 c}$ ve tive in minutes, the ladicated apeed and Mach number and best rate of cilmb may be obtained by inapection as shown in Figure 5.72. This acceleration method of obtaining cilmb data is more difficult to apply than map appear from the analyais, the prine ry source of orror boing the lag in the conventional type of air-speod indscating aystem. This may be overcome by calibrating the system for lag, by using a no-lag syston which has its instrument very near the alr-speod probe, or by uso of electronic preseure measuring derices to determine indicated air speed. Another approach is to determine the time, dietance, velocity and acceleration by radar tracking.

1 plot of ∇^{2} va time as in Figure 5.72 is fairly adequate for determination of best climb speads, but tests have shown it to be usually unsatiafactory for dotermining accurate R / C values. A better analyais of B / C and best climb speods can be made by couputation of dE/dt from level acceleration values of dV, dt. and dh. Because $d \nabla+d t$ is required, the accuracy with which these incremente are determined sots the accuracy and data scatter of the resulta. Minimulincremant valuos should be ten (10) knots $d V$ or 15 seconde dt. Equaticn 5.709 is suitable for mactine computation of $\mathrm{dE} / \mathrm{dt}$. Valises of M should also be computed.

$$
\begin{equation*}
\left(\frac{d s}{d t}\right)_{a}=w_{2}\left[\frac{19362 \theta_{a_{a}}\left(H_{2}^{2}-H_{1}^{2}\right)+\left(E_{c_{2}}-H_{c_{1}}\right)}{t_{2}-t_{1}}\right] \sqrt{\frac{T_{a t}}{T_{a s}}} \tag{5.709}
\end{equation*}
$$

Two level accelerations should be made at each altitude reciprocal headings. I/C is determined from $d F / d t$ and desired veight: $\Delta E / C_{1}$ and $\Delta R / C_{3}$ corrections can also be appliod. The de/dt plot appeare e.s in Figure 3.73.

Since d / c : in a function of both h and $\nabla^{2} / 2 \mathrm{~g}$ a maximizing function of $\mathrm{dr} / \mathrm{dt}$ invoives both and takes the form,

$$
\begin{equation*}
\frac{d E}{d t}=\text { max. whon } \frac{\partial(d B / d t)}{\partial\left(\nabla^{2} / 2 g\right)}-\frac{\partial(d g / d t)}{\partial h}=c \tag{5.7n0}
\end{equation*}
$$

or when,

$$
\begin{equation*}
\frac{\Delta(\Delta E / d t)}{\Delta \nabla}=\frac{\nabla}{B} \frac{\Delta(d B / d t)}{\Delta h} \tag{5.721}
\end{equation*}
$$

This optimum $d E / d t$ can be determined graphically and shown as on Pigure 5.73. This climb achodule will then involve zooming or diving to obtain a given speod and altitude in miaimum time as abova in Figure 5.74.
RATE OF CHANGE OF TOTAL PBESSURE FOR DRFINING $\mathrm{d}(E / W) / d t$. Total pressure rate of change Will approximately define $d(B / W) / d t$, and can be demonstrated by use of equations 2.21 , $4.9,4.10$, and the equation of state. The rasulting equation ia applicable to a differential pressure gago.

$$
\begin{equation*}
\frac{d P t}{\left.\left(\Lambda_{t} P_{t}\right)=\text { const } P_{a}\left(1+.2 M^{2}\right)\right]}=\frac{d(\Sigma / V)}{d t}-\frac{d T_{a}}{d t} \frac{\left(\gamma E M^{2}\right)}{2}-\frac{d h}{d t}\left(2+.2 M^{2}\right) \tag{5.72}
\end{equation*}
$$

T_{a} is the inetrument temperature and is esaentially constant for a given altitude. Use of rate of climb instrument for thla rurpose has ljeen sucgested by Lt. Col. J.L. Ridley, USAF. The lag constant used mist provide measurable differential pressures and not result in oxcessive lag in $d P_{t}$ indicationa.

Typical Plot of Level Flight Acceleration Data

Tigury 5.73
Rate of Change of Total Rorgy Plot

Figure 5.74

Malmurrine Climb Schedule Plot

Dimonilonlese Rate of Climb Plotting

In equation $5.115,5.116$ and 5.117 it may be coon that the parameters $\frac{\left(\frac{d h}{d t}\right)}{\sqrt{T}}$, and M
are dimensionless in term of the physical system of dimensions. The remaining parameters,

$$
\frac{T \mathrm{HP}}{P_{a} \sqrt{T_{a}}}, \frac{\Pi}{\sqrt{T_{a}}}, \frac{P_{n}}{P_{a}}, \text { and } \frac{W}{P},
$$

may be made dimensionless by the insertion in each of a cbarscteristio leagtit raised to some power. As this characteristic length for a particular aircraft romaine constant, these latter parameters may be considered functionally dimensionless. All the above parameters will result pram a dimensional analysis of the variables effecting rate of climb.

For propeller driven aircraft, BAP from torque meter readings may be orbetituted for THP in equation 5.115. Then the parameters for dimeneloaless plotting are,

For turbojet powered alroraft equation 5.116 la applicable and the paranotera are,

conorally in this type of a plot the terra Q_{a} and σ_{a} roploos T_{a} and P_{a}
where:

$$
\begin{aligned}
& \theta_{a}=\frac{q_{a}{ }^{2}}{288} \\
& q_{a}=\frac{p_{B} H_{B}}{29.92}
\end{aligned}
$$

Ae them are four variables involvad, it is neceasary to hold one of them conotant during a partioular climb. It can be soen that Mach numbor is the only term that could reasonably be bold oometant during olimb. By maring oheck olimbs at oonetant Maoh tumber and two or throe different constant rpan it is possible to plot climb data vithout makiag waight or pover correotiong and to ues the plotted data to dotermine atandard day otandard weight rato of ollmbeven in the rogion where oompreselbility effeote are large. Figure 5.81 illustrates a dimensionlese rate of olimb plot for a constant Mach number, data being obtainod at three difforent power eottinge.

81gur 5.81
Typioel Dimanionlene Climb Data at Conotant Mach Truber and Varion $\mathrm{W} / \mathrm{S}_{\mathrm{a}}$ Paremotera

The mothode used for Figme 5.81 can aleo be uoed for etandardizing Fate of olim data. For f1ghter tjpe tmrojet alroraft the beat rate of climb will be at apoede that mintain appoalmintely oonotant Mach nuber for cortain altitude Fangen. Tro olimbing Moh ancerre detorming by astooth oliribe ay be onough to epprocinate all the ollmbing opeade and allow ecteg Interpolation. Buoh a plot vonld appear a in Figure 5.8 an and be uace to oorreot olimb data for all airoraft of the aame zodel with tame tyje of exgine.

 Figure 5.83.

F1gure 5.82
Typioal Dimonalonleas Clizio Data Plot for two Kach Inubere

Muthod of Correoting Climb Dita to Conntant ∇ / δ_{8}

If the lovel plight date are inoluded, two ognatant rpm cilmbs will provide onough pointe to dotermine the $I / V V_{a}-G / C / \sqrt{\theta_{a}}$ curve for congtant W / G_{a}.

In the opeed range for best ollim the ohange in $\mathrm{F}_{\mathrm{n}} / \delta_{\mathrm{a}}$ with $\mathrm{I} / \mathrm{V}_{\mathrm{B}}$ is approximately linear. Thin fact my butilised to dotermine rate of cilimb fata for any condition from a fov congtant Mach number olimbe. Thie is espocially ueoful for very large alreraft having large wight variation wich affeot the beot cilimb speed. Figure 5.84 illustrates a dinensionless rate of olimb plot that vould be dorived from three constant kach numbor olimbe and level fligititata. A innour F_{n} / δ_{a} inorease with $N / \sqrt{\theta_{a}}$ is agsumed for oach of the canatant W / δ_{a} parameters. These olimbe vould be made in a light reight condition so as to obtain maxdman altitudes and $\pi / \sqrt{\theta_{a}}$ values.

F1gury 5.84
Typioal Dimeanicalese Rate of Climb Plot Ghowing Begt Climb Man muber for all vaiven of W / δ_{a} and $\mathrm{I} / \sqrt{\theta_{a}}$ or $\mathrm{F}_{\mathrm{n}} / \mathrm{B}_{\mathrm{a}}$

The method of dimonionlese plotting described above may be espeoially applioable to airoraft maving very large ratee of olimb where eantoothe are 1npreotioal. dleo, whan afterbumer and rorbet powes are unod to boort the rate of olimb, this mothod my prove valmable beosuse of the diffioulty of malige pover corrections in this type of invtallation.

These same types of non-dimenaional rate-of-climb presentations may be obtained from level acceleration data made at constant $W / 8_{a}$ values.

SHOIOR 5.9

Gaporel clinb Togt Inforation

The abooluts ooiling for an airoraft is defined as the altitude where the rate of olinb is zero. The oervice coiling is dofinod as the altitudo at whioh the rate of climb is 100 foet per minute.

For propeller driven airoraft it will be neceseary to mate rate of olimb correction for rarlation in cooler flap poeition. This is acocmpilehed by maring meveral hort olinge at a conntant indicated apeed and varione cooler slap poeitiong. Both the rate-of-climb increment and the ongine terperature increment shonld be plotted va Plap poeition.

In the airoraft perfor anoe report it is deairable to ahow rate of olimb and timp to clinb for tro porer gettinge. This ia required for tactical neo ybon a large mubor of alroraft are to tak off during a period of time and zeet in formation at apeoifiod altitude. To acocuplish this the firgt alroraft to take off mat olimb olowor than thow taking off at a later time.

It is umally required in porformanoe reports that one data relative to rate of climb on a reduced momer of ongines be inaluded. Thie is umally dome if making a short ollmb of about 10,000 foet at a man altitude betroec ese level and eervice oelling. The top of this reduced -numer-of onginea olimb chould be close to the apparent eerfioe colling for that oonditiun:

In beary aixaraft, bcibory and tramaporta, two olimbe at noranil rated power or madra jet ongine rya chould be oonduoted for the extrem groan reifort condition, light and beary, whan data are plotted in tho ocnventional Eanor. In thif way the rate of olimb variation rith velgat oan be geop eraphicalis and a ilnear extrapolation nued to mate weifot ocrreetions or to compart the anlytiosl weletht ocsreotion. Typloal olin performanoe presentetiong are shown in Flgure 5.91 For propelior driven esrorapt and in-Figwre 5.92 for jot powered eiroraft.

P1gure 5.91
Standard Clisib Data Precontations
Reoiprocating minine Alroratt

Figury 5.92
Btandard Climb Dita Proeontation, Jot. Begino Alroraft
data remoction outhite (5.91)
For Reoiprocating fugine Alroraft Savtooth and Check Climbs

(1)	Test Point Mumber	
(2)	E_{1}	ft
(3)	$\Delta H_{1 c}$	ft
(4)	$\Delta \mathrm{H}_{\text {pc }}$	ft
(5)		ft
(6)	∇_{1}	knots
(7)	$\Delta \nabla_{1 c}$	knote
(8)	$\Delta \nabla_{p c}$	lnote
(9)	∇_{c}	lonots
(10)	$\nabla_{t s}$	brota
(11)	M	
(12)	t_{1}	${ }^{\bullet} \mathrm{C}$
(13)	$\Delta t_{1 c}$	${ }^{\bullet} \mathrm{C}$
(14)	$\mathrm{t}_{1 \mathrm{c}}$	${ }^{\bullet} \mathrm{C}$
(15)	$\mathrm{T}_{\text {at }}$	-区
(16)	$\sqrt{\theta_{a t}}, \sqrt{T_{a t} / T_{s i}}$	
(17)	$\sqrt{\theta_{a g}}, \sqrt{T_{a g} T_{\text {SI }}}$	
(18)		${ }^{7} \mathrm{BB}$
(19)	$\sqrt{T_{a t} / T_{a g}}$	
(20)	Tuel rotaining,	gals
(21)	Feal at tabe off,	gals
(22)	Puel ured,	$g^{\text {ald }}$
(23)	ΔW_{P}	1 ba
(24)	${ }_{*}{ }_{\mathbf{t}}$	1 lb
(25)	W_{0}	180
(26)	ΔW	1 bm
(27)	$\Delta \nabla$ per engino	1bo
(28)	$\mathrm{H}_{t} \mathrm{por}$ ongide	1 lb
(29)	$t_{\text {t }}$	$\begin{aligned} & \text { Dood } \\ & \text { Minatol } \end{aligned}$
(30)	t_{0}	Deolmel
(31)	Δt	Deorval
$\begin{aligned} & (32) \\ & (33) \end{aligned}$	$\begin{aligned} & \text { Plot (5) ve (31) } \\ & (\mathrm{dH} / \mathrm{dt}) \end{aligned}$	ft/ma

Presaure altitude
Altimeter ingtrument correotion Altimoter poeition orror correction
True preseure altitude, (2) +(3) +(4)
Indicated air opeed
Air-apeed ingtrument correction
Alr-speod position orror correotion
Callbrated air speed, $(6)+(7)+(8)$
Standard day true epeed, from CHART 8.5
and (9) and (5)
Nach numer, from CEART 8.5 and (9) and (5)
Indicated air tomperature
Tomperature instrwent correotion
Instrument corrected indicated air
tamperature, (12) + (13)
Absolute teet air temperature from CBART
8.2 (14) and (11)
$\sqrt{(15) / 288}$
Fram etandard altitude tablen and (5)
Atmonpleric preasure, from etandard alt1tude tables and (5)
$(16)+(17)$
(21) - (20)

Frol weight used in ollmbing, (22) $x \mathrm{lbs} / \mathrm{gal}$
Tout wight, take -off groen woight - (23)
standard weight at altitude, from ohook
olinb ar veight at initial eavtooth point
Clinb roight oorreotion, (25) - (24)
$(26)+$ manber of ongines
(2h) + muber of enginee
sapoed time to allimb to altitude
Tim at etart of clinb
TIm to olimb to tent altitude, (29) - (30)
Time to ollab ourve
altimotor rate of cilind fram olopen of (32)

(34)	(dh/dt) ft/min	Tapeline rate or climb at atandard day true spoed, test woight, and test power, (33) x (19)
(35)	Wind Cradient Factor	CEART 5.41, (when required)
(36)	dh/dt Correoted for Wind Gradient	t (34) z (35) when required
(37)	Aoceleration Factor	CEART 5.51 and (5) and (9) for aav:00th climb at constant ∇_{C}. CHARTS 5.51 and 5.52 and (5) and (9) for oheck ollmb not flown at constant V_{C}.
(38)	Throttle setting	
(39)	Mixture oetting	
(40)	Tachometer Reading	
(42)	Tachometer Instrument Correctio	
(42)	Engine rpm	$(40)+(41)$
(43)	$\mathrm{MP}_{1} \mathrm{FE}_{8}$	Indicated manifold pressure
(44)	$\triangle \mathrm{NP}_{10} \quad \mathrm{NHg}$	Manifold pressure instrument correction
(45)		Tost manifold pressure, (43) + (44)
(46)	BEP ${ }_{t}$	Test BEP, from power charte or torque moters
(47)	BHP_{t} per engino	$(46)+$ number of ongines
(48)	$\left(\mathrm{MP}_{\mathrm{t}} / \mathrm{P}_{\mathrm{a}}\right)$	Manifold proseure - ambient preseure ratio, (45) + (18)
(49)	Manifold pressure ratio factor	Fram CHART 5.21 and (19) and (48)
(50)	$\frac{\Delta R / C_{1}}{\operatorname{BBP}_{\mathrm{t}} \text { por onsino }}$	Rate of climb correction for power at unaccolerated climb aonditions, fram CHART 5.21 and (19) and (48) and (28)
(51)	$\left(\Delta R / C_{1}\right)_{s} \quad \mathrm{rt} / \mathrm{min}$	Rate of cllmb correction for pover, accolerated olimb conditions, (50) x (47) + (37)
(52)	$(\mathrm{R} / \mathrm{C})_{\Delta}+\left(\Delta R / C_{1}\right)_{a} \mathrm{ft} / \mathrm{min}$	Standard das rate of cllmb at etandard pover and teat wolght for the accelerating alroraft, (34) or (36) $+(51)$
(53)	$\frac{N P_{0}}{N_{1}}$	$\{[(49)-$ one $] \times(19)\}+$ tro.
(54)	$1 \mathrm{~Pa}_{0} \quad \mathrm{Hg}$	Standard day manifold prossure, (53) \times (45)
(55)	$\triangle \mathrm{F} / \mathrm{C}_{2} \quad \mathrm{ft} / \mathrm{min}$	Rate of ollimb voight oorrection, accoler ated conditions, $(-26) \times(52)+(24)$
(56)	$\frac{\Delta B / C_{3}}{\Delta W}$	Rate of ollinb induced drag correction, unacoolerated oonditions, from CHART 5.31 and (5) and (11) and wing apan
(57)	$\left(\triangle R / C_{3}\right)_{\text {a }} \quad$ It/min	Pate of olimb induced dras oorrection for acoolerated ollimb condition, (56) 2 (26) $+(37)$
(58)	Standard velght correoted rate of cilmb, accelereted oonditione	$(52)+(55)+(57)$
(59)	Plot (58) ve (5) and eraphicalij	J integrate to get time to olimb ve (5)
	HOIE: For turbo euperohargers t should be spplied, and eq	the oorreotione dencribed in Chapter Two quation 5.208 ueed to find $\Delta R / C_{1}$.

data remoction ouiline (5.92)

For Je't Alroraft Savtooth and Cheok Climba

(1)	Teat Point Number	
(2)	E_{1}	ft
(3)	${ }^{-1} \mathrm{H}_{10}$	ft
(4)	$\triangle \mathrm{E}_{\mathrm{po}}$	$f t$
(5)	H_{0}	1 t
(6)	∇_{1}	knots
(7)	$\Delta \nabla_{10}$	knots
(8)	$\Delta \nabla_{p c}$	knots
(9)		knote
(10)	M	
(11)	$\nabla_{\text {to }}$	mots
(12)	t_{1}	\cdots
(13)	Δt_{10}	${ }^{\circ} \mathrm{C}$
(14)	t_{10}	${ }^{\circ} \mathrm{C}$
(15)	Tat	${ }^{6}$ I
(16)	$\sqrt{\theta_{a t}}, \sqrt{T_{a t} / T_{B L}}$	
(17)	$\sqrt{\theta_{a 0}}, \sqrt{T_{a g} / T_{B L}}$	
(18)	$\sqrt{p_{a t} / T_{a s}}$	
(19)	Fuel Remaining	gala
(20)	Fuol at take off	gala
(21)	Fuel uged	gala
(22)	ΔW_{f}	1bs
(23)	W_{t}	1 lb
(24)	H_{0}	Ibe
(25)	ΔW	160
(26)	ΔW per engino	1 lb
(27)	W_{t} Per engine	$1{ }^{\text {l }}$
(28)	t_{0}	Deoras 1 Minutes
(29)	t_{8}	Deoimal
(30)	Δt	Minutes Deoimal
		Minutee
(31)	Plot (5) ve (30)	
(32)	$\mathrm{dH}_{\mathrm{c}} / \mathrm{dt}$	rt/nin
(33)	dh/dt	ft/rin

(34) Wind Cradient Factor

Presaure altitude
Altimeter ingtrument oorreotion
Altimeter position error oorrection
True preseure altitude, (2) $+(3)+(4)$
Ind icated air opeed
Alr-apeed instrwment oorreotion
Alr-opeed position correction
Calibrated alr speed, $(6)+(7)+(8)$
Nach number, fram CEART 8.5 gind (9)
and (5)
Standard day true opeod, from CHART 8.5
and (9) and (5)
Indicated air temperature
Temperature ingtrument oorreotion
Instrument correoted indicated air
tomperature
Absolute test air temperature fran CEART
8.2 and (14) and (10)
$\sqrt{(15) / 288}$
From etandard altitude tables and (5)
$(26)+(27)$
(20) - (19)

Fuol woight uood for olimbing, (21) x ibs/gal
Tent weight, take-off groge veight - (22)
Standard woight at altitude irom oheck olimb, or woight at initial savtooth point
Climb reight correotion, (24) - (23)
(25) + number of onginoe
$(23)+$ number of enginee
Elapeed time to olimb altitude
Time at otart of olimb
Time to olimb to test altitude, (29) - (28)
Timo to ollnb ourve
Altisater rate of olimb, from elopes of (31) Tapeline rate of olimb at standard day true apood, tost woight and teat thrust, (32) 1 (18)

CEART 5.41, (when required)
(35) $\mathrm{dh} / \mathrm{dt}$

Corrected for Wind Gradient
Acceleration Factor
$\begin{array}{ll}\text { (37) } & N_{1} \\ \text { (38) } & \Delta N_{10} \\ (39) & N_{t}\end{array}$
(40) $N / \sqrt{\theta_{a t}}$
(42) $N / \sqrt{\theta^{a t}}$
(43)
$\frac{\Delta R / \sigma_{1}}{\Delta F_{n} / \delta_{a}}$

$$
\left(\Delta R / C_{1}\right)_{a} \quad \rho t / \min
$$

(45)
$(R / C)_{a}+\left(\Delta R / C_{1}\right)_{a} f t / m i n$
$\Delta R / C_{2} \quad \mathrm{ft} / \mathrm{min}$
$\frac{\Delta R / C_{3}}{\Delta W}$
(48)
$\left(\Delta R / C_{3}\right)_{a} \quad f t / m i n$
49) Standard wight correoted rate of climb, accelerated oonditione
(50) Plot (49) ve (5) and graphicaily integrate to got time to ollmb ve (5)

HOIF: If unaccolerated olimb data is desired, correct (33) or (35) to unacoelerated conditions and make other corroctions assuming no acoeleration.

SHCHION 5.10

Rate of Dagcont Data

Dosoent data are ugualls presented in the performance report only for jet powored alroraft. This is because the range of jet alrcraft increacea conaiderably more with altitude than does the range cf recirvocating angins aircrait. Boat range in jot alroraft is obtained by flyirg at a very high altituds until a minimum amount of fuel remaine. This is followed by a hioin opood descont at minimum ongine fuel proseure and reoulting low fuol flow zato.

It is alvo important for tactical considerations to ovaluate control ionem, buffeting and othor undesirable dive charactoristics. The effecta of di:e brakos, tip tanke end oxtornsl armament on injeb opood doscents is oxtrorsily important in Pightor and ground support ailcraft.

Rate of descent data reduction is identical to rate of climb data redintion, except that no thrust correction is made for temperature variation from atindard. This is because the descente are made at constant fuel preseure and the efiscte of temperatire on thrust are very amall relative to the high rates of descent. The tapelino rate of descent at etandard day true apeed is definod by,

$$
\begin{equation*}
-\frac{d h}{d t}=R / D=-\frac{d H_{c}}{d t} \sqrt{\frac{T_{a t}}{T_{a s}}} \tag{5.10.01}
\end{equation*}
$$

The veight corrections are,

$$
\begin{align*}
& \frac{\Delta R / D_{2}}{\Delta W}=-\frac{R / D}{H_{t}} \tag{5.10.02}\\
& \frac{\Delta R / D_{3}}{\Delta W}=\frac{50.65 \sqrt{T_{A B}}}{P_{A} M b^{2} \cdot} \tag{5.10.03}
\end{align*}
$$

where:

$$
\Delta W \quad-W_{0}-W_{t}
$$

Hquation 5.10 .03 is solved by CHART 5.31 , but the o1gn of the parameter $(\Delta R / C)_{3} / \Delta W$ mast be ohanged when the ohart io appliod to detormino $(\Delta R / D)_{3} / \Delta W$. since tho airaraft accelerates during the descent at congtant Mach number, ($\Delta R / D)_{3}$ frum the ohart should be oorreoted to tho acoelerated oondition. This may be done by (5.10.04). Fuel consuaption weicht corrections are not required.

$$
\begin{equation*}
\left(\Delta R / D_{3}\right)_{a} \cdot \frac{\left(\Delta R / D_{3}\right) \text { chart }}{\left(1+0.233 N^{2}\right)} \tag{5.10.04}
\end{equation*}
$$

In the airoraft performanoe report, rate of descent data is presented as in Figure 5.10 .1 to show rate of deacent, time to descend, Mach number, true speed, distance traveled, fuel preserere, and fucl used.

Figure 5.10.1 Report Presentation of Descent Data

ATER 6973
CHRT 5.21

148673
MBITE 5.23
5-392－1m
艮事趿

chatar 5.31

5-41

GENRT 5.51
 0.40

$$
\begin{aligned}
& \mathrm{H}_{0}<36089 \text { feet } \\
& \frac{d \mathrm{P}_{\mathrm{a}}}{d h}=-2^{\circ} \text { C per } 1000 \text { tt. }
\end{aligned}
$$

CHAPTER SIX

take-off and landing performance

SECTION 6.1

Techniques and Configurations fur Tako. Off Tosts - JAtO operation

Take-off tests consist of a series of take-offs to dotermine the ground distance from the start of the run to the point where the aircraft leaves tho ground, and the air distance from this point to the place where the aircraft $1 s$ 50 feet above the runway. During the tests, the airplane should be oporatod in a manner considered to give the best take-off performance within the operatiunu: limits of the airplane and engine. Unless otherwise specified, the eross veita, for take-off tests includes the maximum load likely to be used in seryice. dll tests are run as close as possible to the desired gross weight to keep all weight corrections to minimum. is local wind conditions affect the take-ofi distance and techniques used, tests should not be conducted when the wind velocities exceed 10% of the take-off speed of the aircraft.

For airplanes with wing flaps that are used for take-off, severel flap positions are used to determine the optimum flap position. Cowl flape are open for take-off, the airflane is held with brakes and maximum allowable power is attained prior to brake release. Maximun power is obtained as soon as practicable during the take-off run. As an example, the F-5i aircraft is limited to 40 inches manifold pressure wichout anchoring the tail, but 61 inches is used for take-off power. Therofore, the maximum allowable power prior to brake relesse is 40 inches and the maximum power is 61 inches.

When jet assist take-offs are made and it is desired 20 obtain the most advantage from a short durition rocket, the rocket should be ignited at such a point during the take-off run that it will be expended as the airplane passes over the 50 foot obstacle. This point of ignition is normally obtained by estimating the number of seconds after brake release that the rocket should be ignited, and then bracketing this point by making one or two takeooffs. In most cases this information should be given to the pilot in the form of a number of seconds after brake ralease; however, it may sometimes be advantageous to ignite the rockets at an indicated air speed. For long burning rockets, the shortest take-off will be made by igniting the rockets at brake release.

Distance and Boight Moaguromente and Equipmont

Measurements should be taken to determine the distance from the take -off starting point to the place where the aircraft leaves the ground and to the point where the alrplane reaches the altitude of 50 ".nt. These moasuremente may be made in various waje. A few of the methode soneral use follow:

When camera equipment is not available oither of the following ejateme may be ued. The firat congiets of eeveral theodolites (aighting bars) ppaced along the runvay 00 as to cover the distance from take off point to the simulated 90 foot obstacle. The diatance and time from take-ofi point to each sightine atation will give an approximation of the aircraft apeod and take off distance. This mothod is ahow schematically in Figure 6.21.

Figure 6.21
Begio Method for Obtaining Take-Off and Landing Time and Distance pata

It is good practioe to station two or three observers at the edge of the rambs in the vicinity of the take off point to mark the oxact point of take-off. The data obtained by such observers are alvays a good oheck on ground roll diatance rogardlese of the mothod ueed for obtaining data. Juing this mothod the boight of the alrcraft above the ramay may be obtained by a formula deteralned from Figure 6.22.

$$
\begin{equation*}
\mathbf{H}=\frac{D_{h}}{d}+\Delta H \tag{6.201}
\end{equation*}
$$

where:

$$
\begin{aligned}
& H=\text { height of aircraft above the theodolite, ft. } \\
& D= \text { diatance from rumay centerline to theodolite eje } \\
& \text { plece, ft. } \\
& h=\text { height read on theodolite as aircraft passes, ft. } \\
& d= \text { length of theodolite, it. } \\
& \Delta H= \text { height of theodolite above rumay, ft. }
\end{aligned}
$$

Figure 6.22
Theodolite Ceometry
A more soourate field method of obtaining take off data consists of a theodolite pivoted 00 it maj track the aircraft during the take-off run, Pigure 6.23. The thoodolite is oongtruoted in oush a way that, by koeping orose-hairs on the aircraft, a pencil trace of the airoraft pooition is placed on a chart faetened rigidiy to the theodolite mupporte. The owiveling theodolite is eet up at a known distance from the rummay and 00 allgned as to encompass oaly ae moh of the runway as will be nocessary for the teats of the partioular airoraft under conelderation. This is done to obtein the grestest acowrey fros the ingtrwont.

Varione otandard digtanoes frcm the rumay may be arbitrarily deterniciod and oharte prepared in adrance for we on this theodolite. A tindug mohanimm beilt into the eighting bar marke overy seoond on the ohart. Cround observer. aro uged to mark the exaot point of take off, and this information may be placed on the ohart at the ond of each teat. A typioal chart and take-off graph is 111ustrated in Figure 6.24.

F1guro 6.23
Take -off Data Infteliation for Swiveling
Cemera or Becording thoodolite

F1gure 6.24
Reconding Thoodolite Chart
The mont aoourate moang of recoming take-off date is vith a moving ploture oumera whoh will photograph the airoraft under teat, a timing devico, and elther a erid or azimuth coale. A portable 1.6 m. oumore has beon deviced whiob photoeraphe the rumay, a otop watoh and the poeltion of the alrplane with reepeot to an azimuth aoale. Knowing the azimuth and the dietance of the oavra from the
furmay along a normal to the runvay, the pooltion of the alroraft may be do termined at any time during the teat. A typical fram from a teat camora rould appear as in Figure 6.25.

Height Above Rumway May Be Scaled or Calculated

Figure 6.25
Typical Frame from Tako-off Canora film
A fizod grid may also be ueed to photographioally reoond the teete. In this mothod a grid oopisting of a network of oalibrated virea if placed in iront of a normal camors in the mannor shom in Figure 6.23 and at awh a diatance that it will remain in foous along with the airplane being teated. A timing device my be mounted on either the exid or camera to give a tiva hietory of the talo off or landing. A tJpical irame taken through this tjpe of erid is ohom in Herre 6.26.

Figure 6.26
Typioal Frame Erom Canora-Cald Film

TakeOff Data Corrections for Wind Height, and Density

From information obtained by any of the above methods in the previous section, the observed data may he plotted as in Figure 6.31. This figure is usually included in the final report as is the corrected takeoff data.

Figure 6.31
Presentation of Actual Take off Tire and Distance Data

The indicated air aped at tabo-off and 50 foot an well as the true air aped should be shown, as the pilot is primarily concerned with the air aped that ie read on the instrument panel, and this value 10 independent of pressure and temperature.

All takeoff performance data are corrected to sea level standard conditiong and zero wind unlearn otherwise specified. The average of the best two of at least four take -offed is reported ae performance data. Correoted data are unvaily presented in the following ohart fore:

(1) around Roll (ft)	(2) Total Diatance over 50' helght	(3) Indioated At Take-ops	Spoed $50^{\prime} \stackrel{\Delta t}{\mathrm{~B}} \mathrm{~g}_{\mathrm{ght}}$	$\operatorname{Take~orf~}_{\text {True }}^{\text {Tre }}$	
c - Configuration - heighit - powtr sietitig					

TAKE-ORTE DATA CORRECTION

The tabeoff performance of any alrcraft is highly dependent on pilot techoique. Even with experienoed woll-gualifiod pilote it ie diffioult to make the airoraft tak off at the same value of lift coefficient each time. Ae this 10 the rule rather than the exoeption, a rigorow mathomatical treatment of reduuing obeerved take off dats to etandard condition ie not varrented; there. fore, no matherstionily exsot nolutions will be given for rednoing data.

The correotion of eround roll for the offect of vind may be ompirioally -xpreaned as,

$$
\begin{equation*}
s_{t}-s_{t v}\left(\frac{\nabla_{t 0}+\nabla_{v}}{\nabla_{t 0}}\right)^{1.85} \tag{6.301.}
\end{equation*}
$$

whare:

Btw $_{\text {m }}$ - beerved ground roll, ft, with vind 8_{t} - eround roll ocrreoted for wind, ft $\nabla_{t o}$ - cround velooity at take off ∇_{w} - component of vind along the rumway boadrind (+); tailuind (-).	

Thit relatioaship hae been verifiod by extongive flight tew: Ilegleoting wind, the growd roll during talm off 10,

8
 I $d \nabla$
where:
$\nabla_{t 0}=$ true prod at tako-off point
acoleration
NTIR 6273

Amending "a" to hare en effective conateat value at a mean value of ∇^{2} the above oxireanion boomer.

$$
\begin{equation*}
s=\frac{1}{2} \frac{\nabla_{t 0}^{2}}{2\left(.7 \nabla_{t 0}\right)} \tag{6.303}
\end{equation*}
$$

The effective thrust acting throughout the takeoff is defined as the difference between propulsive net thrust at $\cdot 7 V_{\text {to }}$ and the aircraft resistance to forward motion at the same point. Thin takeoff thrust equation may be written as.

$$
\begin{equation*}
F_{e f f}=\frac{V}{E} a=\frac{V \nabla_{t O_{0}}^{2}}{2 \xi^{2}} \tag{6.304}
\end{equation*}
$$

The basic takeoff distance equation then becomes,

$$
\begin{equation*}
S=\frac{V \nabla_{t 0}^{2}}{2_{E} F_{o f f}}=\frac{W \nabla_{t o}^{2}}{2 g\left[F_{n}-\mu(W-L)-\bar{D}\right]-.7 \nabla_{t o}} \tag{6.305}
\end{equation*}
$$

One method of evaluating the effect of gail changes in the variables of equation 6.305 ia by use of logarithmic differentiation. With this mathematical process and with the assumption of constant C_{L} at takeoff for ail conditions of the variables.

$$
\frac{d D}{D}=\frac{d I}{L}=\frac{d Y}{W}
$$

where,
D aircraft drag. $I=$ acrodyname lift
then
$\frac{d S}{S}=\frac{d Y}{V}-\frac{d \sigma}{\sigma}+\frac{I_{n}}{F_{\text {II }}}\left(\frac{d \eta}{V}-\frac{d F_{n}}{F_{n}}\right)+\frac{d \mu}{\mu}\left(\frac{F_{n}-D}{F_{011}}-1\right)$
or in another form

vane $J_{n}=J_{n}=.7 V_{t 0}$
$\mu=$ coefficient of rolling roeietance
Toplrical values of μ are
$\mu=.02$ for hard surface canvas
$\mu=.0410 \mathrm{FIF}$ teri
$\mu=.10$ for soft turf
APR 6273

These equations should be used only where the ration of the variables 21 e between 0.9 and 1.1.

If there is weight variation the indicated peed mat be adjusted for constank O_{L} aswurpion.

$$
\frac{T_{2}}{V_{c_{2}}}=\sqrt{\frac{V_{1}}{V_{2}}}
$$

An exact reletionihlp between takeoff distances for lecce change in the variables of equation 6.305 can be found by mating μ constant and defining? S_{2} in term of $\mathrm{S}_{1}, \mathrm{~V}_{\mathrm{KO}_{2}}$ in terms of T_{to}, and Feff_{2} in term of Fofl. at constant C_{L}. Thin expression is.

$$
\begin{equation*}
\frac{s_{2}}{s_{1}} \cdot \frac{v_{2}}{v_{1}} \frac{n_{1}}{r_{2}} /\left[\frac{r_{n_{1}}}{F_{0 f f_{1}}}\left(\frac{w_{1}}{w_{2}} \frac{F_{n_{2}}}{F_{n_{1}}}-1\right)+1\right] \tag{6.308}
\end{equation*}
$$

Equations 6.306, 6.307, and 6.308 as gown are directly applicable to turbojot aircraft where net thrust is quite easily determined for takeoff condition.

Correction for runway 1 ope and Ch Variation

It is sometimes necessary to correct takeoff data for ranvay slope. This is a siple geometric consideration. two effective thrust is.

$$
\text { Pelf level } \text { Fotsiope }+V \ln \theta
$$

dividing by Foffelope and subetitutime equation 6.304.

To correct data to constant C_{L} a relationship is found by multiplying equation 6.304 by $(M / M)=1$.

TRon.
$8=\frac{y^{2}}{2+3} \frac{T_{1}^{2}}{y}$
and

$$
s_{2}=s_{1} \frac{\left(T_{\left.t e^{2} / W\right)_{2}}^{\left(T_{t e}^{2} / W\right)_{2}}\right.}{} \quad \begin{align*}
& \text { (constant } \sigma \text {) } \tag{6.310}\\
& \text { (for jot aircraft only) }
\end{align*}
$$

The slope and $C_{\text {I }}$ corrections along with the wind corrections should be applied to test data prior to density weight and thrust corrections.

AIR dIScasce data correction

To determine the corrected horisontal alr distance from liftmoff point to clear a flety foot obstacle the correction to zero wind is expresed as the product of riod velocity and time.

$$
\begin{equation*}
s_{a}^{\prime}=s_{a_{q}}^{\prime}+\nabla_{v} t \tag{6.311}
\end{equation*}
$$

where:

$$
\begin{aligned}
& s_{a}^{\prime}=\text { wind corrected test air dietance } \\
& s^{\prime}=\text { obsorved air distance in wind } \\
& \nabla_{w}=\text { wind component along runmay } \\
& t \quad \text { - time from lift-off to } 50 \text { ft. point }
\end{aligned}
$$

Haglecting wiad the follouing expressions may be writton for the air distance and the aircrait onoreg change through it.
$\nabla=\frac{S_{a}}{t}$ and $\frac{d P}{d t}=\frac{(50+b)}{t}$
where:

$$
\begin{aligned}
& \nabla=\text { man true alropeed between take-01f and } 50 \mathrm{ft} \text {. hoicht. } \\
& E=\left(50+r^{2} / 2 c\right) Y \text {, total energ of the alfcraft. } \\
& v \text { - croses voicht } \\
& h_{\nabla}=\left(\nabla_{50}^{2}-\nabla_{t 0}{ }^{2}\right) / 2_{E} \\
& \frac{d T}{d t}=T(I-D) \\
& \text { Y } 3 \text { ant thrust } \\
& \text { D = total alr drec }
\end{aligned}
$$

Combining these expressions and enbetituting $T(\Gamma-D)$ for de/at a ceneral exprssion for the air dietance is dorived.

$$
\begin{equation*}
8_{0}=\frac{V\left(50+D_{7}\right)}{(T,-D)_{0 f f}} \tag{6.312}
\end{equation*}
$$

Locarithade difforentiation be applied to equation 6.312 to determene the offect on air dietance of mall chances in the variables. shale procest givet for a conetant C_{L} at $\nabla_{\text {to }}$ and ∇_{50}.

ATHE 6273

$$
\begin{equation*}
\frac{d B_{a}}{\delta_{a}}=\left(\frac{d V}{V}-\frac{d \sigma}{\sigma}\right) \frac{h_{m}}{50+h_{v}}+\left(\frac{d V}{V}-\frac{d I_{n}}{F_{n}}\right) \frac{I_{n} s_{a}}{V\left(50+h_{V}\right)} \tag{6.313}
\end{equation*}
$$

or in anotber form

$$
\begin{equation*}
\frac{s_{a_{2}}}{s_{Q_{1}}}=1+\left(\frac{v_{2}}{v_{1}}-\frac{n_{2}}{\sigma_{1}}\right) \frac{n_{1}}{50+h_{1}}+\left(\frac{v_{2}}{n_{1}}-\frac{F_{n_{2}}}{F_{n_{1}}}\right) \frac{r_{m_{1}} s_{a_{1}}}{v_{1}\left(50+n_{1}\right)} \tag{6.314}
\end{equation*}
$$

whare $F_{n}=$ not thrust at a man apood botwoen $\nabla_{t o}{ }^{2}$ and $\nabla_{50}{ }^{2}$.

These equations should be used only where the ratios of the rariables 110 betreen 0.9 and 1.1.

An exact relationship between air distances for large changea in the varlablea of equation 6.312 can be found by defining Sa_{2} in terme of $S_{a} \nabla_{t 0_{2}}$ and $\nabla_{50_{2}}$ in term of $\nabla_{t o y}$ and $\nabla_{5 O_{1}}$ and $(F-D)_{2}$ in term of $(F-D)_{1}$ at constrnt $C_{L_{t o}}$ and $C_{L_{50}}$ This expresion 1s.

$$
\begin{equation*}
\frac{\delta_{a_{2}}}{8_{n_{1}}} \cdot \frac{v_{2} \sigma_{1} b_{n_{2}}+50}{n_{v_{1}}+50+s_{a_{1}}\left(\frac{\Gamma_{a_{2}}}{v_{2}} \cdots \frac{v_{m_{1}}}{u_{2}}\right)} \tag{6.315}
\end{equation*}
$$

Equation 6.313. 6.314, and 6.315 as hown are directly applicable to turboJet aircraft vhere net thruet is quite casily deternined for tetocoff condition.

BOTE JWT AID PROPILTER PORERD AYBCRAT

The following expressions for the effecte of changes in the indopendeat reriables involved in equations 6.305 aod 6.312 were devoloped and checlod eginat experimantal date by Hr. F.J. Iugh of the fricht Beeerch Branch. Mr Force Filcht Teat Conter. The complete study and analyis my be found in, estandardisation of Take-0ff Performace Masuremate for Alrplanos". Technical Iote B-12, Air Force Iight Teet Center, Edvarde Mr Force Beeo, Elmerde, Cal 180 rala .

Thase formala wre developed by appliceticn logerithede differentiation to equations 6.305, and 6.322, and to applicable propeller relationahipe. The eonstante were deterained primarily by craphical amysie of a larco amount of tabo-off date from trpical aircraft. Correction obtalned bu thece formalas will sive cufficiently accurate data for changes in the veriablea up to $\pm 20 \%$.

Thagenen! Cane: For propeller drifon and jot airplane. the cuaral equations (6.316) and (6.317) will be neod.

$$
\begin{align*}
\frac{\Delta s_{G}}{S_{G_{t}}} & =\frac{\Delta Y}{W_{t}}\left\{2+\frac{D}{F-D}\right\}-\frac{\Delta C}{\sigma_{t}}-\frac{\Delta F}{F_{t}}\left\{1+\frac{D}{F-D}\right\} \tag{6.316}\\
\frac{\Delta s_{I}}{S_{a_{t}}} & =\frac{\Delta v}{W_{t}}\left\{1+\frac{D}{F-D}+\frac{h_{t}}{h_{\nabla}+50}\right\}-\frac{\Delta F}{F_{t}}\left\{1+\frac{D}{P-D}\right\} \\
& -\frac{\Delta \sigma}{\sigma_{t}}\left\{\frac{h_{V}}{h_{\nabla}+50}\right\} \tag{6.317}
\end{align*}
$$

With the proposed constants

$$
\begin{equation*}
\frac{\Delta s_{t}}{S_{E_{t}}}=2.3 \frac{\Delta V}{W_{t}}-\frac{\Delta \sigma}{\sigma_{t}}-1.3 \frac{\Delta F}{F_{t}} \tag{6.318}
\end{equation*}
$$

or al ternetively

$$
\begin{equation*}
\frac{s_{g_{e}}}{s_{G_{t}}}=\left(\frac{W_{\mathrm{s}}}{W_{t}}\right)^{2.3}\left(\frac{\sigma_{t}}{\sigma_{s}}\right)\left(\frac{P_{\mathrm{s}}}{P_{t}}\right)^{-1.3} \tag{6.319}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{\Delta S_{a}}{S_{a_{t}}}=2.3 \frac{\Delta Y}{Y_{t}}-0.7 \frac{\Delta \sigma}{\sigma_{t}}-1.6 \frac{\Delta i}{I_{t}} \tag{6.320}\\
& \frac{s_{a_{\mathrm{a}}}}{s_{a_{t}}}=\left(\frac{\mathbf{u}_{\mathrm{a}}}{\mathbf{W}_{t}}\right)^{2.3}\left(\frac{\sigma_{1}}{\sigma_{t}}\right)^{-0.7}\left(\frac{\mathbf{p}_{\mathrm{t}}}{\bar{P}_{t}}\right)^{-1.6} \tag{6.322}
\end{align*}
$$

for 2ight alrplanes

$$
\begin{equation*}
\frac{\Delta S_{2}}{8_{A_{t}}}=2.0 \frac{\Delta Y}{V_{t}}-0.4 \frac{\Delta \sigma}{\sigma_{t}}-1.6 \frac{\Delta F}{F_{t}} \tag{6.322}
\end{equation*}
$$

For modarate corroctions either type of equation is satiafactory, but if the corrections are large (for exampie, $|\Delta S / s|<0.2$) the exponential forme will be appreclably more accurato.

Propellor Thruat Correctione:
For ilxed pitch propellert,

$$
\begin{equation*}
\frac{\Delta l}{Y_{t}}=1.1 \frac{\Delta \sigma}{\sigma_{t}}-0.1 \frac{\Delta Y}{V_{t}} \tag{6.323}
\end{equation*}
$$

$$
\begin{array}{r}
\frac{\Delta r}{F_{t}=1.1 \frac{\Delta \sigma}{\sigma_{t}}+0.4 \frac{\Delta T_{a}}{T_{a_{t}}}-0.1 \frac{\Delta Y}{W_{t}}} \tag{6.324}\\
\text { at foll throttle }
\end{array}
$$

While. for constant speed propellers

$$
\begin{equation*}
\frac{\Delta I}{F_{t}}=0.7 \frac{\Delta P}{P_{t}}+0.5 \frac{\Delta \sigma}{\sigma_{t}}-0.5 \frac{\Delta I}{F_{t}}-0.2 \frac{\Delta I}{X_{t}} \tag{6.325}
\end{equation*}
$$

TakeOff and Air Distance Corrections for Fixed Pitch Propellers: Corrections may be required at constant engine speed or at full throttle.
At constant engine speed

$$
\begin{equation*}
\frac{\Delta S_{c}}{S_{C_{t}}}=2.4 \frac{\Delta V}{W_{t}}-2.4 \frac{\Delta \sigma}{\sigma_{t}} \tag{6.326}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\Delta S_{\mathrm{a}}}{S_{\mathrm{a}_{t}}}=2.2 \frac{\Delta V}{W_{t}}-2.2 \frac{\Delta \sigma}{\sigma_{t}} \tag{6.327}
\end{equation*}
$$

If $\Delta S / S$ is numerically large, it is again preferable to use the exponential forme

$$
\begin{equation*}
\frac{s_{g_{g}}}{s_{g t}}=\left(\frac{v_{g}}{v_{t}}\right)^{2.4}\left(\frac{\sigma_{g}}{\sigma_{t}}\right)^{-2.4} \tag{6.328}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{s_{a_{t}}}{s_{a_{t}}}=\left(\frac{v_{t}}{u_{t}}\right)^{2.2}\left(\frac{\sigma_{1}}{\sigma_{t}}\right)^{-2.2} \tag{6.329}
\end{equation*}
$$

at fall throttle there will be a correction to engine oped

$$
\begin{equation*}
\frac{\Delta s_{t}}{S_{\varepsilon_{t}}}=2.4 \frac{\Delta Y}{V_{t}}-2.4 \frac{\Delta \sigma_{t}}{\sigma_{t}}+0.5 \frac{\Delta T_{t}}{T_{a_{t}}} \tag{6.330}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Delta S_{a}}{S_{a_{t}}}=2.2 \frac{\Delta Y}{W_{t}}-2.2 \frac{\Delta \sigma}{\sigma}+0.6 \frac{\Delta T_{A}}{T_{a_{t}}} \tag{6.331}
\end{equation*}
$$

With the corresponding exponential forme

$$
\begin{equation*}
\frac{s_{g_{g}}}{s_{g_{t}}}=\left(\frac{W_{\mathrm{g}}}{W_{t}}\right)^{2.4}\left(\frac{\sigma_{\mathrm{g}}}{\sigma_{t}}\right)^{-2.4}\left(\frac{\mathrm{~T}_{\mathrm{a}_{\mathrm{g}}}}{\mathrm{~T}_{\mathrm{a}_{t}}}\right)^{0.5} \tag{6.332}
\end{equation*}
$$

$$
\begin{equation*}
\frac{s_{B_{s}}}{s_{a_{t}}}=\left(\frac{Y_{2}}{W_{t}}\right)^{2.2}\left(\frac{\sigma_{t}}{\sigma_{t}}\right)^{-2.2}\left(\frac{T_{a_{s}}}{T_{a_{t}}}\right)^{0.6} \tag{6.333}
\end{equation*}
$$

Gonatant Speed Propellers: This section applies to airplanes which are entirely, or almost entirely. propeller driven at takeoff. For the ground roll,

$$
\begin{equation*}
\frac{\Delta S_{g}}{S_{S_{t}}}=2.6 \frac{\Delta V}{W_{t}}-1.7 \frac{\Delta \sigma_{t}}{\sigma_{t}}-0.7 \frac{\Delta I}{\mathbb{B}_{t}}-0.9 \frac{\Delta P}{P_{t}} \tag{6.334}
\end{equation*}
$$

and the alternative form

$$
\begin{equation*}
\frac{s_{g_{g}}}{s_{\varepsilon_{t}}}=\left(\frac{u_{e}}{W_{t}}\right)^{2.6}\left(\frac{\sigma_{s}}{\sigma_{t}}\right)^{-1.7}\left(\frac{\mathrm{~B}_{8}}{H_{t}}\right)^{-0.7}\left(\frac{\mathrm{P}}{\frac{s}{P_{t}}}\right)^{-0.9} \tag{6.335}
\end{equation*}
$$

For the air phase, distinguish between light and heavy airplanes. For light airplanes use.

$$
\begin{equation*}
\frac{\Delta S_{\mathrm{a}}}{S_{A_{t}}}=2.3 \frac{\Delta Y}{W_{t}}-1.2 \frac{\Delta \sigma}{\sigma_{t}}-0.8 \frac{\Delta H}{H_{t}}-1.1 \frac{\Delta P}{P_{t}} \tag{6.336}
\end{equation*}
$$

or alternatively

$$
\begin{equation*}
\frac{S_{a_{g}}}{S_{a_{t}}}=\left(\frac{w_{g}}{w_{t}}\right)^{2.3}\left(\frac{\sigma_{g}}{\sigma_{t}}\right)^{-1.2}\left(\frac{H_{g}}{H_{t}}\right)^{-0.8}\left(\frac{P_{g}}{P_{t}}\right)^{-1.1} \tag{6.337}
\end{equation*}
$$

For heavy airplanes in the air phase, use,

$$
\begin{equation*}
\frac{\Delta s_{0}}{S_{a_{t}}}=2.6 \frac{\Delta W}{W_{t}}-1.5 \frac{\Delta \sigma_{r}}{\sigma_{t}}-0.8 \frac{\Delta N}{N_{t}}=1.1 \frac{\Delta B H P}{B_{H}} \tag{6.338}
\end{equation*}
$$

or alternatively

$$
\begin{equation*}
S_{a_{8}}=\binom{W_{s}}{W_{t}}^{2.6}\left(\frac{\sigma_{8}}{\sigma_{t}}\right)^{-1.5}\binom{W_{t}}{W_{t}}^{-0.8}\binom{B B P_{\mathrm{t}}}{\frac{B P_{t}}{}}^{-1.1} \tag{6.339}
\end{equation*}
$$

Thrust Correction for Turbo Propellers: The general case equations 6.318 or 6.320 or their altergtes, nav be used for turbo propeller airplanes.

The thrust correction is given by

$$
\begin{align*}
& \frac{\Delta F}{F_{t}}=\frac{\Delta F_{s}}{F_{t}}+\left(1-\frac{F_{1}}{F_{t}}\right) \frac{\Delta F}{F_{p}} \tag{6.340}\\
& \text { where: } F_{t}=F_{g_{t}}+F_{D_{t}}
\end{align*}
$$

and estimate $\Delta P_{p} / F_{p_{t}}$ by equation 6.325.

$$
\begin{equation*}
\frac{\Delta F_{P}}{F_{P_{t}}}=0.7 \frac{\Delta \mathrm{BBP}}{\frac{B A P_{t}}{}}+0.5 \frac{\Delta \sigma}{\sigma}+0.5 \frac{\Delta I}{\sigma_{t}}-0.2 \frac{\Delta}{H_{t}} \tag{6.325}
\end{equation*}
$$

Coneraily for turbo propeller edreraft; $\frac{\Delta F}{} \frac{\Delta F}{}$ is negligible and an be 1epored. Then $\frac{\Delta F}{F_{t}}=\frac{\Delta F}{F_{t}}$

Fext-Tin Assistance: Again, equations 6.318 and 6.320 ant used bagicely, but with an effective man thrust. The consideration here is primarily JAIO, but the method cen be applied to other form of thrust boot operated over a 11 mited period.

The tent effective, man thrust boost P_{R} in either the ground rall or air plane given by equation 6.341.

$$
\begin{equation*}
F_{R_{e}}=\frac{\varepsilon_{R}}{S} P_{R} \tag{6.341}
\end{equation*}
$$

where
$F_{R}=$ JANO thrust
$S_{R}=$ distance covered in phase with JATO operating

```
S = total lopgth of phage
```

The standerd effective mean thrast in the air pbase is either zero (ATO to cease at take-off) or equel to the actual aro thruat (ATO to last to 50 ft .). The standard offective mean thruat in the ground roll, however, depende on the time. $t_{a_{s}}$. duribg which the $4 T O$ is co operate in the air phase under standard conditions.

$$
\begin{aligned}
& { }^{1} \mathrm{R}_{\mathrm{a}} \text {. } 0 \quad 4 T 0 \text { coasing at tako-off }
\end{aligned}
$$

Hence, if $t_{a_{t}}$ was the test duretica of the 170 in the alr phase, the ATO duration In the ground roll enset be corrected by

$$
\begin{equation*}
\Delta t_{R_{c}}=t_{R_{a_{t}}}-t_{R_{a_{2}}} \tag{6.343}
\end{equation*}
$$

Whe correction to the air phate is then given by equation 6.320 uliag the total mean effcetive thruat. For the cround roll, bowever, uee oquation 6. 3du
water
Tt. toat total thrast
Ib besio ongive thruet

The thrust tery in all the above equatione are the thrusts obtalned at man tako-off or alr distance spode unlese otherwise defined.

SECTION 6.4

Ianding Parformance Teate and Correctiong

Landing teate congist of a espios of landinge to detarpire tho total distanoe required to pass over a 50 foot obstacle, touch down, and cam to a complete atop. The alreraft ehould in operated in such a manner as to give the best landing performance vithin tho operational ilmits of the airplane.

The grose weight for landing tegts is ugually the maximum load ugod in eervice; for heavily loeded airoraft it may be lees one half the fuel and lese any dropable load. All tasts will be run as close as posible to the desired groes weight, as weight correctione for landing roll have not been proved congietent. The aircraft landing configmmetion is normaliy vith ving flape full down, ongine at idling rym, and cowl flaps, when installed, full cloged. Aay apecial oon? iguration for landing will be so atated. After the airoraft has touched down maximu braking pover is applied vithout skidding.

The measurement of air and ground distance for landing is acocmplished in the same manner as deacribed for take off tests. The observed landing time and digtance data are plotted similarly to the observed take-off data. All landing performance data are correoted to standard conditiong unlees othervies epecified. The average of thy best two of at least four landinge is reported. As in take offe, pilot technique is a large factor in determining landing performanco. Approach technique and the use of oratog aro extromely Important in order to produce coneletent reaulte.

LANDILG DATA CORRDETIORS
In converting the observed data to standard, sea level oonditione, the wind correotion as ueed for talo-off are again used. those are:
groond roll comreoted for wind $=$ obe. ground roll $\left(\frac{\nabla_{t d}+\nabla_{v}}{V_{t d}}\right)^{1.85}$
air diatanoe corrected for wind = obe. air dietance + Ft
During the approach from the 50 foot obstacle to tomoh down, the airoraft has both potentisl and liotio enorgy vilion mant be diesipated prios to touch dow. This may be expressed av,

$$
\begin{equation*}
\frac{V}{8} \quad\left(\frac{\nabla_{50}^{2}}{2}-\frac{\nabla_{t 4}^{2}}{2}\right)+50 W=18^{\prime} \tag{6.401}
\end{equation*}
$$

vhere:

$$
\begin{aligned}
F & =\text { retarding force soting over the air distanoe } \mathbf{s}^{\prime} \\
\nabla_{50} & =\text { truo epeed at } 50 \text { foot height } \\
\nabla_{t d} & =\text { true epeed at touch dow }
\end{aligned}
$$

Solving for air diatance,

$$
\begin{equation*}
s^{\prime}=\frac{W}{F} \quad\left(\frac{\nabla_{50}^{2}-\nabla_{t d}^{2}}{2 g}+50\right) \tag{6.402}
\end{equation*}
$$

The term W / F is actually an average ratio of lift to drag during the descent. Due to ground effect and transition iram glide to flare out, the value of L / r is difficult to obtain, and it must be aseumed to be conatant for all weight and density conditions. The difference in the velocities V_{50} and $V_{t d}$ may be eaid to be negligible between test and otanderd conditions. Therefore, it is soen that the test air distance equals the atandard air distanoo, except for the effecte of wind, and the insel expreseion for correcting air dietance during landing is given as,

$$
\begin{equation*}
s_{l t}^{\prime}=s_{l t y}^{\prime}+\nabla_{w} t \tag{6.403}
\end{equation*}
$$

where:

$$
\begin{aligned}
S_{l t}^{\prime}= & \text { landing air distance from a } 50 \text { foot obstasle, zero } \\
& \text { wind, ft. } \\
S_{/ t w}^{\prime}= & \text { teat landing air distance from a } 50 \text { foot obstacie, } \\
& \text { with wind component, ft. } \\
V_{w} & =\text { wind componont, ft/sec } \\
t & =\text { time, sec }
\end{aligned}
$$

For the landing ground roll, the ground distance may be given as:

$$
\begin{equation*}
s=\int_{V_{t d}}^{0} \frac{v}{a} d v \tag{6.404}
\end{equation*}
$$

Using an average deceleration during ground roll, this expression may be olmplified by integration to the following form:

$$
\begin{equation*}
s=\frac{V_{t d^{2}}}{-2 s} \tag{6.405}
\end{equation*}
$$

where:

> -a deceleration

Aseuming for constant test and etandard day touch down truo opeede that the change in C_{L} at standard and obsorved conditions is negligible, equation 6.405 mas be etandardized in the sam manner ue the take-off equation. The final expression for landing eround roll ie,

$$
\begin{equation*}
s_{l \theta}=s_{l t v} \quad\left(\frac{\nabla_{t d}+v_{v}}{v_{t d}}\right)^{2.85} \quad\left(\frac{w_{Q}}{w_{t}}\right)^{2}\left(\frac{\sigma_{t}}{\sigma_{t}}\right) \tag{6.406}
\end{equation*}
$$

whorn:
$3_{18}=$ etandard landing eround dietance
$\boldsymbol{B}_{\text {ltw }}=$ toat landing ground distance with wind componont
and the total landing ilstance is then,

$$
\begin{equation*}
\text { Total } s_{l a}^{\prime}=\left(s_{l}^{\prime}{ }_{l v}+v_{w} t\right)+s_{l t w}\left(\frac{\nabla_{t d}+V_{w}}{V_{t d}}\right)^{1.85}\left(\frac{W_{g}}{W_{t}}\right)^{2}\left(\frac{\sigma_{t}}{\sigma_{a}}\right) \tag{6.407}
\end{equation*}
$$

From observation of data obtained during many landings, it has been found that the weight correction as shown in equation 6.407 is not reliable, and, in the event of a departure from standard woidut during landinge, no weight corrections have been found usable because of the many factors involved in landing technique; these factors are: apprcach speeds, flare-out pattern, application of brakes, etc. As a result, every effort is made to keep the test weight as close to the standard weight as pcosible, and the final usable equation for landing roll is,

$$
\begin{equation*}
\text { Total } s_{l_{B}}=\left(s_{\rho_{t w}^{\prime}}^{\prime}+v_{w} t\right)+s_{p_{t v}}\left(\frac{v_{t d}+v_{w}}{v_{t d}}\right)^{1.85}\left(\frac{\sigma_{t}}{\sigma_{s}}\right) \tag{6.408}
\end{equation*}
$$

IATA REDUCTION OUTLUTE (6.41)

For Landing Test Data

$\left(\begin{array}{l}1 \\ \text { (2) }\end{array}\right.$	$s_{v_{t d}}$	$\begin{aligned} & \text { it } \\ & \text { ft/sec } \end{aligned}$
(3)	$\nabla_{\mathbf{W}}$	st/sec
(4)	$s_{l t}$	ft
(5)	P_{4}	" Hg
(6)	$t_{\Delta t}$	${ }^{\circ} \mathrm{C}$
$\left(\begin{array}{l}7 \\ (8)\end{array}\right.$	$\begin{aligned} & \sigma_{t} \\ & \sigma_{\mathrm{a}} \end{aligned}$	
(9)	σ_{t} / σ_{s}	
(10)	$\mathrm{s}_{\mathbf{\prime}}$	ft
(12)	$s_{l}{ }^{\text {ctw }}$	ft
(12)	${ }_{\text {t }}$	000
(13)	8 la	ft
(24)	2otal ${ }^{\text {P }}$	ft

Observed ground roll, with wind component Ground velooity at touch down, from slope of time diatance curvo
Wind comporient along runway, fram observed data; beadiind (+), tallwind (-)
Test ground roll corrected for wind, (1) x $\left.\frac{(2)+(3)}{(2)}\right]$
Test barametric pressure, fram obeerved data
Test ambiont temperature, from observed data
Test density ratio, $9.625 \times(5)+[273+(6)]$ Standard denaity ratio, from standard altitude tables and field elevation
(7) $+(8)$

Standard ground roll for zero wind (4) x (9)
Obsorved air digtance from 50 foot height, with vind componont
Time from 50 foot height to touch down Standard landing air distance from 50 foot hoight, for zero wind (12) $+[(3) \times(12)]$
Total standard landing diatance from 50 foot helght for zero wind, (10) + (13)

Application of dimensional amalysis to take-off perforrance mametines assist the engineer by reducing tive apparent number of independent variables and, more vitally, by associating variablea such as air density which are out of his control in "non-dimensiondi" groupe with controllable variables such as afrplane cross velgat and engine pover or thrust.

The practical value of such an approach has not yet been assessed. It seems hovever, to be potentially riluable in certain cases. In particular, if the test values of the nou-dimensional groups derived can be accurntely controlled at the values correspnading to standard conditions the standardization procese can thereby be almost eliminated. Otherwise, the main attraction of the approach would be to enable more officient use of test data obtained ander a ude range of test conditions, particulerly when it is desired to prodict from such tests the takeoff performance under a wide range of standard condltione.

Many non-dimensional groupe can usually be made up in any one problen. Those given below are useiul, but may be modiliod if circumatances so demand.

RECIPPDCATING ENGINE AIRCRAPI

The functional relations beiween the ground roll and the independent variables for an airplane in a given configuration may be witton in the following form, among otheri:

$$
\begin{equation*}
S_{s}=I_{1}\left(B E P, H_{,} \rho, V, \nabla_{t_{1}}, \mu, E\right) \tag{6.501}
\end{equation*}
$$

where:
$S_{c}=$ crmund roll
4 I oome ilxed area of the aliplane
v = grose velght
I = omgine speed
$T_{t_{1}} z$ true peed at unctick
$\mu=$ coefficient of friction (with ground)
Similariy we can write for the total distance so reach a height "h".
$s_{t}=\mathcal{I}_{2}\left(B E P, N, \rho, V, \nabla_{t_{1}}, \nabla_{t_{2}}, \mu, \boldsymbol{\varepsilon}, \mathrm{~b}\right)$
Where $V_{t_{2}}$ is the true spoed at the boiget. "h".

AIIR 6273

By application of dimonsiomal analyeis to the above functional relations we may deduce that

$$
\begin{align*}
& \frac{s_{c}}{\sqrt{\Lambda}}=\phi_{1}\left(\frac{B B P \sqrt{A P}}{v \sqrt{V}}, \frac{R M^{t}}{\sqrt{R}} \cdot \nabla_{t_{1}} \sqrt{\frac{\rho A}{V}}, \frac{\rho P}{v} \Delta \sqrt{A}, \mu\right) \tag{6.503}
\end{align*}
$$

In any particular case we may onit "A" and also, for a given system of units, " \boldsymbol{c}^{n}. Ve may also subatitute σ for ρ and, for normal runway surfaces, omit μ. We then have for the ground roll.

$$
\begin{equation*}
s_{c}=\gamma_{1}\left(\frac{B R P \sqrt{\sigma}}{v \sqrt{v}}, w, \frac{\nabla_{t_{1}} \sqrt{\sigma}}{\sqrt{v}}, \frac{\sigma}{v}\right) \tag{6.505}
\end{equation*}
$$

and bence

$$
\begin{equation*}
s_{6}=\psi_{2}\left(\frac{\text { 㱏 }}{\|}, M, \frac{\nabla_{t} \sqrt{\sigma}}{\sqrt{\eta}}, \frac{\sigma}{\eta}\right) \tag{6.506}
\end{equation*}
$$

The tere in T_{1} is proportiomal to $G_{1}^{-\frac{1}{2}}$ and will therofor be approcieately constant for a given level of piloting akill or of riek. (Changes in avallble C_{L} due to change of elipetrean intensity may be ignored foy moderate
 and ith effecte treated acattor. Othorvise, it may be asceseary to attompt to croes plot in toxn of it.

From inepection of equation (6.506) it vill be readily appreciated that if the testa can be rade at the ralues of σ / Y. I and BEP/Y which correspond to standerd condition the ground roll will be equal to the standard ground roll for the sam velue of the takemff lift coofficient. Ho standerdisation of the obeerved cround roll is required. Nternetively, test gromad rolle for a range of BEip/V and $\sigma / 4$ ight be plotted againet these variablan and the ground roll at any desired combinatione of powns. denoity and grose welght deduced.

A elinilar coneideration of the total dietance to beight "h" showe that for the particular case of the Aletasce to 50 ft . Wo may wite,

$$
\begin{equation*}
s_{t}=Y_{2}\left(\frac{\pi \cdot P}{\forall} \cdot \pm \cdot \frac{\nabla_{t} \sqrt{\pi}}{\sqrt{V}} \cdot \frac{\nabla_{\xi_{2} \sqrt{\sigma}}}{\sqrt{V}} \cdot \frac{\sigma}{V}\right) \tag{6.507}
\end{equation*}
$$

ATR 6273

In this case the veriable $\frac{T_{z} \sqrt{\sigma}}{\sqrt{\nabla}}$ will usvaliy be relatively uniuportant and may be oaltted. The expression $\nabla_{t_{2}} \sqrt{\frac{\pi}{\Gamma}}$ is a function onjy of the lift coofficient at 50 ft , and will be ammed conotant between test and standard condition for a givan levol of akill and risk. As with the ground roll. the expresion would be ignored unless ite veriation from test to test vac -o large as to make crose plotting desirablo.

AIRCRAFT WITR TURBO-STT OR MLCED SYSTEN

A siallar approach may be adopted for airplanes with turbo-jet ongines or any propuleire syiten which operetes throughout the take-off. If. insteed of defining the performace of the propulsive tystem by the veriables BIP, H and $\rho_{\text {. wo wite }}$ in only the not thruet F_{n} we may deduce the more general relatione,

$$
\begin{align*}
s_{6} & =\psi_{3}\left(\frac{F_{n}}{V}, \frac{\nabla_{t_{1}} \sqrt{\sigma}}{\sqrt{V}}, \frac{\sigma}{V}\right) \tag{6.508}\\
\text { and } s_{t} & =\psi_{4}\left(\frac{F_{n}}{V}, \frac{\nabla_{t_{1} \sqrt{\sigma}}}{\sqrt{V}}, \frac{\nabla_{t_{2} \sqrt{\sigma}}}{\sqrt{V}}, \frac{\sigma}{V}\right) \tag{6.509}
\end{align*}
$$

As with the reciprocsting englad airplane the expressions containing ∇_{t} and ∇_{t} will usually be 1 snored and their effecte troatod as satter. If, then, the tefte can be rade at the values of F_{n} / v and $\sigma / 4$ which correspond to atandard conditions no further standerdiestion is geceseny. Liternetirely. a plot of take-aff distance against these grouph would giold the tato-0ff diftances for any deairod combination of J_{n}. Wand σ within the axperimatal range of F_{n} / V and σ / W. For oxmmle, take-off distances at moderate might and hifh altitade may be deduced from teits ade at a hich groes reight at low altitode (hich denelty) with a suitable thruet.

Alternative relatione which may sometimet be mre convenient my be obteined by including ambient air pressure and tomperature ae independent variables inetead of air density only. This vould normally increase the resultant number of nondimenional groape, but in this case it cen bo shown that oae croup is negigible. If we start with the relatione.

$$
\begin{equation*}
S_{c}=I_{5}\left(F_{n}, M_{1} P_{a}, T_{a}, T_{t_{2}}, \mu, c, \Delta\right) \tag{6.510}
\end{equation*}
$$

it can be deduced from dimanional analyais that

$$
\begin{equation*}
\frac{\delta_{a}}{T_{a}}=H_{s}\left(\frac{T_{n}}{\Delta P_{a}} \cdot \frac{Y}{\Delta P_{a}} \cdot \nabla_{t_{1}} \sqrt{\frac{\Delta P_{a}}{V_{a}}} \cdot \mu \cdot \frac{\mu^{2}}{L_{a}^{2}}\right) \tag{6.512}
\end{equation*}
$$

and
de before, we may now omit G, A and μ, so deducing the relations

$$
\begin{align*}
& \frac{S_{a}}{S_{a}}=\psi_{5}\left(\frac{T_{a}}{T_{a}}, \frac{V}{P_{a}}, \nabla_{t_{2}} \sqrt{\frac{\sigma}{V}}, T_{a}\right) \tag{6.514}\\
& S_{t_{1}}=\gamma_{6}\left(\frac{\bar{T}_{a}}{T_{a}}, \frac{Y}{P_{a}}, \nabla_{t_{2}} \sqrt{\frac{\sigma}{V}}, \nabla_{t_{2}} \sqrt{\frac{\sigma}{V}}, T_{a}, \frac{h}{T_{a}}\right) \tag{6.515}
\end{align*}
$$

Vo thus have the very inconvenient variable T_{a} left uncombined with any controllable variable. If a dymaical analysis is made at this point, however, it can be shown with the above choice of variables Ta may be omitted. (This happens because P_{a} and T_{a} do not in fact affect takeoff entirely independeathly bat only through their ratio $P_{a} / I_{a}-1 . e .$, the density. They were introduced as independent variables only to produce the groups P_{n} / P_{a} and $\left.\mathbf{W} / \mathrm{P}_{\mathrm{a}}\right)$. We that bare.

$$
\begin{equation*}
\frac{s_{a}}{T_{a}}=\gamma_{7}\left(\frac{F_{n}}{P_{a}}, \frac{V_{a}}{P_{a}}, \nabla_{t_{1}} \sqrt{\frac{\sigma}{V}}\right) \tag{6.516}
\end{equation*}
$$

and $\frac{S_{t}}{T_{a}}=T_{8}\left(\frac{F_{n}}{P_{a}}, \frac{V}{P_{a}}, V_{t_{1}} \sqrt{\frac{\sigma^{V}}{V}}, \nabla_{t_{2}} \sqrt{\frac{\sigma^{2}}{V}}\right)$

Whore $S_{\text {g }}$ is the distance required to reach a height equal to the value of h / T_{a} under standard conditions, ia, a height $h x \mathrm{Ta}_{\mathrm{a}} / \mathrm{T}_{\mathrm{t}}$ where suffices - add t indicate standard and test conditions respectively. Those equation are sometimes wore convenient as P_{n} / P_{a} is usually independent of air temperature and W / P_{a} is more readily controlled than σ / W.

cEAPTER SRTVET
 heticoprtr fligat test prrpormance and analisis

SACTION 7.1

Introduction

The flight teating toohniques and performance data analyeie mothods for helloopter alrcraft are still in the research and development otage. The may peouliarities of helicoptor design and flight performance characteristice proeent difficult analytical problems in both performance standardization and instrumentaition requiremente. The problomg of parformance weight correction and accurate low, or zero, epeod determination have not been oolved in any aimplified manner. Althouge the ungtable flying characteristics of the helicopter may be corrected by future development, at present they present a very difficult ilying task to the test pilot who goeks to obtain high quality test data.

The ablilty of the helicopter to move in any direction relative to ita three axes presente a major control problem whon otabilized flight in a cortain direction is required. Although the helicopter can hover motionless at any altitude below the hovering coiling, the dotermination of the true hovering condition is not possible without olaborate and ingenious devices for determining zoro air epeod. It might appear that, because this tjpe alrcraft is capaiolo of maintaining etabilized flight between zero and marimum air spoed, there would be no problems of stalling as are oncountered in conventional airoraft. Actually, because the individual rotor blades are airfoile, a etall oondition oan oocur on the blades individually or as a group, and thin otall oan be offoctive in imitinf porformanco at any apeed from zoro to marimum. Blado otall in an important performanoe oriterion, as it is acocurpanied by oxceselve power requirements and welght limitations at both high and low Porvard apeeds. In addition, at high forvard apeede the blade etall is rere pronomeod in the retreating portion of the rotor diak aroa, This maj reault in ribratica and oxcessive control instability in addition to the inoreased power demande.

The bacio aerodynamio analyeis for the belloopter ia essentially that of the conventional propeller or airsorev. In the helicopter, euitable mochanical devices allow part of the rotor thrant to aot as a horisontal ocarponent whioh belanoes the fuselage drag and propels the airoraft. The remaining rotor thrust ourtaing the beliooptor or provides enough thruat for vertical motion upwarde. Part of the total power output of the ongine 18 also used to overocme blade drag and epar lomeen and to provide direotional oontrol. Figure 7.11 illustrates the rotor threast ocurpongits.

The many aorodyminc factore involved in the performanoe of a bellooptor rotor or ajutem of rotore have ocoflicting affeots on optinum performance; that which cerves beat for the hovering oondition my detract fron the high forvard opeed performanoe. A particular alroraft may be the reoult of many aerodynamio ocomprofedey that vere made to obtaln optimes overall performanoo. Conerally these compromises are made, not in the variable factore that are of interest in flight performance analjuie, but in som of the aerodmario oonotante auch as
the rotar configuration, the rotor area, the rotor solidity factor (blade area/ rotor area), and the blade twist or shape. Fight teata may be required to evaluate warious oonfigurations of these items, but they are not ilight variables in thongelves. As with conventional aircraft, the belicopter performanoe presentation should include the standard speed-power, rate of olimb and desoent, range, hovering performance and rotor officiency for various grose woights and configurations of the particular design being tested.

Figury 7.11
Simplifiod Sketoh of Holicopter Thruat and Lift Components

It should be noted here that theoretical atudies and flight tests indioate that the most officiont level ilight and hovering performance will be obtained by varjing rotor ypm or tip apeod. The most effloient rpm at high flight apeod is groater than the moat effloient rpm at low ilight speed and hovering. Actually, it appeara that future holicopters was bave two rotor gear ratios, one giving a high rotor rym for high-gpood forvard lilght and ano giving a lover rotor ry at maximm ongin power for hovering and low-upeod forvard ilight. This faotor vill not oonplicate dsta reduotion or preaentation, beonuge for moft officient operation, each of the two rotor rpa nay be restrioted to separate formard apeed ranges and data may be plotted for a oonstant rotor rym in eanh of these ranges.

SECTIOM 7.2

Level Flight Porformanoo

The helicopter perfarmance paramoters are restrioted horein to the density altitude method of data reduction and presentation. This is a result of the requirement for a rotor speed variable. If atmospherio pressure and temperature are separated, as is done in the presoure altitude approaoh, the levol flight performance mist be represented by four paramoters and cannot easily be dealt with graphically.

Frtenaive analytical methods uning the vortex thoory and the blade element theory as applied to propellers can be used to determino the many design characterietics for bellcopter rotors. The neceseary illght performance parameters are more eimply derived by the use of dimensional analyale. For the denaity altitude syotem the nondimenaional funotional equation 1s,

$$
\begin{equation*}
\operatorname{BHP}=\rho\left(W, v_{t}, \nabla_{b}, \rho, A\right) \tag{7.201}
\end{equation*}
$$

where:

$$
\begin{aligned}
\text { BRP } & =\text { rotor shaft brake horespower } \\
W & =\text { groes woight } \\
\nabla_{t} & =\text { true horizontal speed } \\
V_{b} & =\text { rotor tip epeed or rpa } \\
\rho & =a 10 \text { density } \\
A & =\text { rotor disk area }
\end{aligned}
$$

From equation 7.201 two basic eets of parameters are derived by dimmional analysis.

$$
\frac{\text { BRP }}{A \rho \nabla_{b}{ }^{3}}=E\left[\frac{H}{A \rho \nabla_{b}{ }^{2}}, \frac{\nabla_{t}}{\nabla_{b}}\right]
$$

These paramoters are reforred to as:

$\frac{H}{A \rho \nabla_{b}{ }^{2}}=C_{T Y}, \begin{aligned} & \text { thruat ocoffioiont (a sunotion of the average } \dot{C}_{L} \\ & \text { for tho individual rotor bladea) }\end{aligned}$
$\frac{\text { EPP }(A))^{\frac{1}{2}}}{W^{3} \text { ? }}=$ powor efficionoy parameter

$$
\frac{\nabla_{t}}{\nabla_{b}}=\mu, \text { tip opeod ratio }
$$

Aprai 6273
$v_{t}\left(\frac{\rho A}{W}\right)^{\frac{1}{2}}=$ epeed paramoter
$V_{b}\left(\frac{\rho A}{W}\right)^{\frac{1}{2}}=\frac{1}{C_{T} \frac{1}{2}}=$ rotor tip apeod parameter
Although BHP is defined as the horsepower dalivered to the rotor, the engine BHP is used for performance work since power extraction for directionel control dose not vary mach for given values of the various parameters.

COEFFICIENT TYPE PERFORMANCT DATA

A typical plot of equation 7.202 is shom in Figure 7.21. It can be seen in this plot that as the values of C_{T} increase (increasing blade C_{L}) more power is required for a constant rotor tip apead. At a constant C_{T} the power required first deoreases with forward epeed and then increases at the higher forvard speede. This results from a alightls increasing rotor blade drag power with apeed, a large reduction in power required to pull air througt the rotor (induced pover), and a large increase in fuselage drag power required with increasing forvard apeed. At high forward apeeds the retreating rotior blades decrease their relative opeed causing the blade C_{I} to increase momentarily; this can cause blade tip etall and result in rapidiy increasing power requiremente at high forvard speede. During hovering and low forward epeede, decreasing rotor tip speeds can mean a reduction in pover required at increased values of C_{P} and C_{T}; hovever, the extent of rotor tip speed reduction is limited by blade otall and reduction-gear power requiremente.

Figure 7.21
Typical Plot of the Coofficiont Mothod of Presonting Eollooptor Lovel Flieht Forformanoe

One of the paramoters in equation 7.202 mugt be hold constant if data reduotion is to be elmplified. At ocnetant rotor epeedes conotant C_{T} values can be maintainod during level filght power orlibrations. This is done by using a obart of velgit or fuel load vi donsity altitude for oonstant C_{T} valuen. This can also be done by ilfing at oonstant value of $\mathrm{W} / \mathrm{S}_{\mathrm{a}}$ an described in seotion 4.9. Within an ambient temperature range of $\pm 3^{\circ} \mathrm{C}$ the orror introduoed in C_{T} at constant W / s a will be only ± 1.0 percent.

For simplified reduction and presentation of data at a conatant rotor rpm, equation 7.202 may be put in a dimensional form.

$$
\begin{equation*}
\frac{\mathrm{BHP}}{\sigma}=P\left[\frac{H}{\sigma}, \nabla_{t}\right] \tag{7.204}
\end{equation*}
$$

A typical ect of ourvea is shown in Figure 7.22. This plot given mea leved stendard performanoe at a glance, and a ocuplete eet of faired ourves oan be easily converted to C_{p}, C_{T}, and μ raluas by use of the nocessary sete of conetante for the particular aircraft and values of BHP/ow, W/o, and ∇_{t} from the falred curves.

718ury 7.22
Typical Dimenional Presentation of Conffioiont Dita at Conatant Hotor Epood, Ievol Fifeht

If deairec the term W / σ may be used in the form $\sigma W_{g} / W_{t}$. This allows power data for a constant rotor rpm to be directly interpreted in terms of denaity at standard weight, or weight ratio at aea level density. Faired data in this form can also be convertea to C_{T} values by use of constants for the particular aircraft.

The dimensional plot of Figure 7.22 zor a particular rotor rpm may be converted to that obtainable at another rotor rpm by these equalities:

$$
\begin{aligned}
& \left(\frac{B H P}{\sigma}\right)_{2}=\left(\frac{B A P}{\sigma}\right)_{1}\left(\frac{v_{b 2}}{V_{b 1}}\right)^{3} \\
& \left(\frac{W}{\sigma}\right)_{2}=\left(\frac{W}{\sigma}\right)_{1} \quad\left(\frac{v_{b 2}}{v_{b 1}}\right)^{2} \\
& v_{t 2}=v_{t 1} \quad\left(\frac{v_{b 2}}{V_{b 1}}\right)
\end{aligned}
$$

The important factor in these rotor rpm conversions is whether the reduced rotor $r \mathrm{~m}$ is also reduced enfine rpu or if normal ongine rpm and power ray be maintained. Any rotor rpm extrayclations should bs apot checked by actual filght teste.

The determanation of teat brake horsepower is easily accomplishod if a torquemeter is instalied on tho engine. Uauaily this device is not available on helicopters and the engine manufacturer's power chart must be usod. In many cases the power charts give very inaccurate reaulte at altitude. If this eppears to be the caee, manifold preserure may be eubstituted for brake horseparer in data presentation like that of Figure 7.22. The orrinates vould then be MP/ σ and V_{k}. Obviously, manifold pressure should not be substituted in the power exefficient term.

POWER, FORWARD SPGED, AND ROTOR SPEED PARAMETER METHOD
For a particular belicopter, equation 7.203 may be put in a dimersional form:

$$
\begin{equation*}
\operatorname{BHP}(\sigma)^{\frac{1}{2}}\left(\frac{W_{s}}{W_{t}}\right)^{3 / 2}=1\left[V_{t}(\sigma)^{\frac{1}{2}}\left(\frac{W_{B}}{W_{t}}\right)^{\frac{1}{2}}, \quad V_{b}(\sigma)^{\frac{1}{2}}\left(\frac{W_{B}}{W_{t}}\right)^{\frac{1}{2}}\right] \tag{7.205}
\end{equation*}
$$

where:

$$
W_{\mathrm{e}}=\text { some etendard gross woight }
$$

The left oide term in this equation is the effeotive power efficiency oomresponding to the inverse of the figure of merit, M, the rotor efficienoy. A typical plot of equation 7.205 as in Figure 7.23 shows the relative rotor efficiencies throughout the level flight range. Minimm values of the power
term oorrespond to maximum values of the figure of merit. The offect of reduced rotor rpm is also apparent on this plot; hovever, as mentioned before, the value of actual reduction of rotor rpm depend on its effect on the power output of the engine.

Figure 7.23
Typical Presentation of Levoi Flight Power, Forvard Speed, and Rotor Speed Data

For V_{t} equal to zero (hovering), equation 7.205 resglves into two parametors which are effeotively the rotor efficiency, M, and $\left(\mathrm{C}_{\mathrm{T}}\right)^{2}$. It aan be eeen from tise above plot that M is a function of C_{T}. The derivation of the figure of merit is discussed in the next section.

For ilight at constant rotor rpy equation 7.205 may be plotted as in Figure 7.24. Hore the paramoter $\left(\sigma W_{p} / W_{t}\right)^{\frac{1}{2}}$ mas bo interpreted as $\left(W_{s} / W_{t}\right)^{\frac{1}{2}}$ for or equal to 1.0 , or as $(\sigma)^{\frac{1}{2}}$ for the atandard woight, or as the porcent of rated 2 rotor rpin for standard aea level and weight conditions. If data are obtained at one rotor rym it may be replotted for some other rotor rpm by uging the equality:

$$
\left(\sigma \frac{w_{g}}{w_{t}}\right)_{2}^{\frac{1}{2}}=\left(\sigma \frac{w_{s}}{w_{t}}\right)_{1}^{\frac{1}{2}} \quad\left(\frac{\nabla_{b 1}}{\nabla_{b 2}}\right)
$$

For the true eposd and altitude ranges enoountered by mont helicopters, dollbrated apeed, ∇_{0}, maj be subatituted for the term $\nabla_{t} \sqrt{\sigma .}$ With the parameters of equation 7.205 a oonstant σ / w mugt be held during pover calibrationa. This 1: acoomplished oy the use of a density altitude welght-C C_{T} ohart or a woight -presevre altitude $-\mathrm{W} / \mathrm{Pa}_{\mathrm{a}}$ chart as desoribed previously.

F1gure 7.24
Typical Presentation of Lovel Flight Powr, Callbratod Speod, and Dongity Data

Spoed-Pover or Speod thanifold Pressure Plots for Flight Toat Data Obtained at Constant $\mathrm{H} / \sigma\left(\mathrm{C}_{\mathrm{T}}\right)$ and Constant Rotor Rpm

(1)	Test Point Number	
(2)	H_{1}	ft
(3)	$\Delta \mathrm{H}_{10}$	ft
(4)	V_{1}	mote
5)	$\Delta \nabla_{1 c}$	knote
5)	$\Delta V_{p o}$	knote
7)	V_{c}	lnots
8)	$\Delta \mathrm{H}_{\mathrm{p}}$	$f t$
(9)	$\mathrm{H}_{\mathrm{c}}{ }^{\text {P }}$	f
(10)	t_{1}	${ }^{\circ} \mathrm{C}$
(12)	$\Delta t_{1 c}$	${ }^{\circ} \mathrm{C}$
(12)	$\mathrm{tat}_{\text {at }}$	${ }^{\circ}$
(13)	$17 \sqrt{\sigma}$	
(14)	$\nabla_{t t}$	knots
(15)	tot	${ }^{\text {c }} \mathrm{C}$
(16)	$\mathrm{t}_{\text {as }}$	${ }^{5} \mathrm{C}$
(1.7)	$\sqrt{T_{a g} / T_{o t}}$	
(18)	Engiso rpm	
(19)	$\mathrm{MP}_{\mathbf{t}}$	"\#8
(20)	HHP。	
(21)	BHP_{t}	
(22)	$\mathrm{W}_{\mathbf{t}}$	lbe
(23)	H_{t} / σ	1bo
(24)	Plot (21) va (14)	
(25)	${ }^{\text {os }}$	${ }^{\circ} \mathrm{C}$
(26)	$\sqrt{T_{\sigma t} / T_{08}}$	
(27) (28)	$\begin{aligned} & \text { BigPa }_{8} \\ & V_{t a} \end{aligned}$	

```
Indicated preserre altitude Altimeter ingtrumont correction Indicated air apoed A1r -apeod inatrument correction Alr-speod position correotion
Callbrated air upend, (4) \(+(5)+(0)\) Altimeter poeition error correctic. Thue presesure altitude, (2) \(+\left(\frac{x}{1}\right)+(8\) : Indicated ambient temporature Temperature ingtrument correction Tost ambient temperature, (10) \& (11) From (9) and (12) and CEART I-1
Tett true apoed, (7) \(x\) (13)
Test carburetor temperature
Standard ambiont temperature, from (i) apd Table 9.2
\(\sqrt[s]{(516)+273]+[(15)+273]}\)
Test manfold presoure
Chart brabe borsepower, frum (9) and (18) and (19)
Test brake horeepover, (20) \(\times\) (17)
Test aircraft welght
(22) \(\times(13)^{2}\)
```

Standard carburetor air temperature, $\sqrt[(16)-(12)+(15)]{\sqrt{(151+273]}+[(25)+273]}$
Standard brake horsepover, (21) (26)
Standard day true epeed, from (27) and (24)
(29) Plot (27) ve (28); this is the etandard day epped pover ourve

HOTV: If the manifold prosaure tambient preseure ratio excoeds 1.5, a carreotion to pover and manifold preseure ehould bo made.

If the ohart power data in not reliable, plot (19) vo (14).
data redoction nutline (7.22)
For BHP/,V_{t}, W/ σ Plot; Constant $W / \sigma\left(C_{T}\right)$ and Rotor Rpm Test Data
(This is a continuatior of Dat, Reduction Outline 7.21;
(24) BHP / σ
$(21) \times(13)^{2}$
(25) Plot (24) vs (14)

Note: If the chart power data is not rellable, plut $\mathrm{MP}_{\mathrm{t}} / \sigma$ ve $\nabla_{t t}$
Data reduction outiine (7.23)
Por BHP $\sqrt{\sigma^{2}}\left(W_{s} / W_{t}\right)^{3 / 2}, V_{c} \sqrt{W_{e} / W_{t}}, \sqrt{\sigma W_{s} / W_{t}}$ Plot;
Constant $W / \sigma\left(C_{T}\right)$ and lotor Rpm Test Data
(This is a contimuation of Data Reriuction Outidne 7.21)
(24) Ws
lbs
Selected atandard woight
(25)
$(26)$$\quad \sqrt{W_{s} / W_{t}} \sqrt{W_{s} / W_{t}}$
$\left(2^{\prime}\right) \quad\left(\mathrm{W}_{\mathrm{s}} / \mathrm{W}_{t}\right)^{3 / 2}$
Weight ratio, (24) + (22)
$\sqrt{\left(25^{\prime}\right)}$
(2.5) $\times(2 t)$
(28) $\quad \mathrm{BHP} \sqrt{\sigma}\left(\mathrm{W}_{\mathrm{c}} / \mathrm{W}_{\mathrm{t}}\right)^{3 / 2}$
(21) $\times(27)+(13)$
(29) . Vc $\sqrt{W_{B} / W_{t}}$
(7) $\times(26)$
(30) Plot (28) vs (29)

Note: If the ohart power data is not rellable, XPt mos be substituted for BHP_{t}.
data reduction outhine (7.24) For C_{p}, C_{T}, μ Plot; Cunstant $W / \sigma\left(C_{T}\right)$ Fliget Feat Data
(This is a contimution of Data Reduction Outline 7.21)

(24)	D	$\begin{aligned} & \mathrm{ft} \\ & \mathrm{ft} \end{aligned}$	Rotor diak diameter
(25)	4	$f t^{2}$	Rotor area
(26)	Rotor rpen ∇_{b}	$\mathrm{ft} / \mathrm{sec}$	Rotor tip speed, $0.0524 \times(24) \times(26)$
(28)	$\left(\nabla_{b}\right)^{2}$		$(27)^{2}$
(29)	$\left(v_{b}\right)^{3}$		$(27)^{3}$
(30)	$1 / \sigma$		$(13)^{2}$. 0
(31)	C_{P}		Power coefficient, (21) $\times(30) \times 231,300$ $+[(25) \times(29]$
(32)	CT		Thrust coefficient, $[(23) \times 421]+(25) \times(28)]$
(33)	μ		T1p speed ratio, [4. $\times 1.69$ (27)
(34)	Plot (31)	Por co	$\mathrm{C}_{\text {T }}$ values.

SECTION 7.3

Rotor Thrugt, Pover, and Efficiency in Hovering Flight

The rotor ajr flow analyois is oimilar to that for the conventiosial propoller. The power required to hover is,

$$
\begin{equation*}
P=T V_{r} \tag{7.301}
\end{equation*}
$$

where:

$$
\begin{aligned}
p & =\text { power to the rotor } \\
\mathrm{T} & =\text { thrust of the rotor } \\
v_{r} & =\text { air velocity through the rotor (induced velocity) }
\end{aligned}
$$

The thruet of the rotor is,

$$
\begin{equation*}
T=\rho A \nabla_{r} \nabla_{d} \tag{7.3c2}
\end{equation*}
$$

where:

$$
\begin{aligned}
A & =\text { rotor area } \\
\nabla_{d} & =\text { downgtream velocity given the air by the rotor }
\end{aligned}
$$

Ey ueing the aotuator disk theosy in which $V_{r}=\frac{1}{2} \nabla_{d}$, the thrust of the rutor may be expreaned also an,

$$
\begin{equation*}
T=1 / 2 \quad \rho A \nabla_{d}{ }^{2} \tag{7.303}
\end{equation*}
$$

From 7.302 and 7.303,

$$
\begin{equation*}
\nabla_{x}=\left(\frac{T}{294}\right)^{t} \tag{7.304}
\end{equation*}
$$

2ram 7.304 and 7.301,

$$
\begin{equation*}
B=\frac{3^{3 / 2}}{(29 A)^{\frac{7}{2}}} \tag{7.305}
\end{equation*}
$$

Twe above equation asaumes ideal inflo through the rotor diek and no pover lowees for control or other purposen.

Equation 7.305 is uned to define the rotor iffloienoy, (M), or "Plguro of merit" an it is uevalls oalled.
$n=\frac{.701 \mathbf{x}^{3 / 2}}{550 \operatorname{BEP}(\rho 1)}$
where:
$.707=1 / \sqrt{2}$, to malo Max equal unity B:PP = brale horeepower to the rotor $T=$ rotor thrast is bovering rlight

A148 6873

Or, in terms of density ratio and weight, where the thrust equala the voight supported,

$$
\begin{equation*}
y=\frac{.0264 w^{3 / 2}}{\operatorname{BHP}\left(\sigma_{A}\right)^{\frac{T}{2}}} \tag{7.307}
\end{equation*}
$$

The figure of merit 18 also defined by the rotor thrust coefficient, C_{T}, and the rotor power coefficient, C_{p}.

$$
\begin{equation*}
M=.707 \frac{C_{T}^{3 / 2}}{C_{p}} \tag{7.308}
\end{equation*}
$$

where:

$$
\begin{aligned}
& c_{T}=\frac{W}{A \rho V_{b}{ }^{2}} \\
& c_{p}=\frac{550 B K p}{A \rho V_{b}{ }^{3}} \\
& \nabla_{b}=\text { rotor tip speed or rpen }
\end{aligned}
$$

As was shown in the previous aection, the figure of merit is a function of the thruat cofficient and should be plotted as show in Figure 7.31.

P1gure 7.31
Typical Figure of Morit - Thrugt Coefficient Plot

Bquation 7.308 may be uged to show graphically the ígure of merit as in Figuro 7.32.

Figure 7.32
Typical Figure of Morit Comparison in Terma of thrnot and Powor Coeffiolonts

2hit plot prestuse a coostant elope of M with C_{T}. This will be the oase if the C_{T} range is iimited. The seme plot is shom in dimenaional form for a partioular helioopter and a oonstant rotor rpin in Figure 7.33. Data in this plot any be extrapolated to other totor rpm by the equalitien derived from equation 7.202,

$$
\left(\frac{\mathrm{BBP}}{\sigma}\right)_{2}=\left(\frac{B B P}{\sigma}\right)_{1}\left(\frac{\nabla_{b 2}}{\nabla_{b 1}}\right)^{3}, \quad\left(\frac{w_{t} / w_{0}}{\sigma}\right)_{2}^{3 / 2}=\left(\frac{w_{t} / w_{e}}{\sigma}\right)_{1}^{3 / 2}\left(\frac{\nabla_{b 2}}{\nabla_{b 1}}\right)^{3}
$$

In Figure 7.34 is hhom a mothod of plotting an effeotive ingure of merit 7 an effeotive rotor upeed.

Tron Figure 7.34 the mont effioient oonibinations of rotor spoed and vight for a given BiffF available can be dotermined. In this maner the hovering oiviling can aluo be deternined for a pertioular eot of oondition. Without gear ehifting arrangemonte, a reduoed rotor tip apeed reouite in a reduced power. Thi mat be inoluded if datm ars extrapointed to lowr rotor tip epeede. For alngle gear ratio helioopters an inereaged hovering performanoe (increared madmum payload) for deoreased rotor apeed is irund to exint only at very low altitudes: and the hovering colling vill be decreased =terially at reduced rotor rpm.

BHP/O

Figure 7.33
Typicel Erfective Figure of Morit Comparicon in Torms of Power, Weight, and Dengits

Figure 7.34
Thpioal Effeotive Figure of Merit Plut in Tormo of Power, Rotor Speod, and Dereity and Weight

Where maximum power ia avallable in hovering, even when rotor greed is rodurai by gearing, the woight limitations for any altitude and the hovering ceiline may be determined by plotting the effective figure of merit ve the effective weight ratic as in Figure 7.35. In this plot the dotted lines show the original data reduced to conatant weichte and denaity altitudes.

Figure 7.35
Typical Effective Flgure of Merit Plot. in Terma of Power, Rotor Speed, Dendity and Weight

When the helicopter is hovering above the ground at a height equivalent to about one rotor dlameter a positive thruat increment is developed by the pressure field between the ground and the rotor. This so called "eround effect" has a noticeable influence on the take-off performance and acta as a cuabion during landings. The ground effect actually increases the rotor efficiency relative to the roter efficienay obtained when the aircraft is out of the ground effect. Thie relative offioionoy increase can be ohom by either of the plote illustrated in Pigure 7.36.

If the elope of the rotor efficiency curve i_{s} nearly zero with reapect to thruat coefficient or effeotive rotor speed, the ground effect hovering may be plotted as in Figure $7.37(0)$; if the slope 1 : other than nearly zero a plot such as $7.27(b)$ must be used.

Determination of the true hovering condition is not eagily done by uge of present alr-apeed indicators. Near the ground a good reference for the pilot is the ground itgelf, but the teste must be oonducted during low or zero wind conditions. At altitude or in appreaiable winds the hovering condition can be determined by use of a long velehted cord attached to the fuselage. When the welghted cord hangs atralcht dom from the helicopter, the aircraft ie otationary with reepect to the air mase in which it is plying. The weighted cord may be indexed to indicate the true hovering height during low altitude teete.

Figure 7.36
Mothod of Showing Ground pfect, on Hovering Performance

For BHP $\sqrt{\Gamma}\left(W_{B} / W_{t}\right)^{3 / 2}$ ve $\nabla_{b} \sqrt{\sigma} W_{B} / W_{t}$ Plot, and M vs
C_{T} Plot; Constant or Variable Rotor Rpm Test Data

Indicated preseure altitude Altimeter ingtrument correction Altimoter position error The preseure altitude, $(2)+(3)+(4)$

NOTE: If a tapeline is used to record height above the ground for low level work it may be used with the ground pressure altitude to obtain true pressure altitude.

Indicated ambient temperature
Temperature inotrument correction
Te日t ambient temperature, (6) $+(7)$
From (8) and (5) and CEART I-1
From (8) and (5) and CHART I-1
Test carburetor temperature
Standard amblent temperature; from (5) and Table 9.2
$\sqrt{(12)+273]}+[(11)+273]$
Test manifold preseure
Chart brake horsopover, from (5) and (14)
and (15)
Tost brake horeepower, (16) \times (13)
Test alrcraft weight
$(18)^{3 / 2}$
Standard aircraft weight
$(20)+(18)$
$\sqrt{2 I}$
$(21)^{3 / 2}$

Rotor alek diamator
Rotor diak area
Rotur tip apeed, $0.0524 \times(24) \times(25)$
(27) ${ }^{2}$
$(27) \times(23)+(9)$

$$
[(27) \text { or }(24]) \times(22)+(9)
$$

Figure of merit, $[0.0298 \times(9) \times(19)]+$ [(27) $工$ (25)]
Thruat coefficient [421 \times (18)] * $[10) \times(26) \times(28)]$
(34) Plot (32) ve (33)

NOTE: If the manifold prosaure ambient pressure ratio exceeds 1.4, a correction to porser and manifold preseure should be made.
If the chart power data is not reliable, substitute $M P_{t}$ for BEP I_{t} in (29) and do not caloujate M and C_{T}.

Climbe and Dascente (Autarotation)

Two types of climbe mat be ovaluated in hellcopter performance; the vertical cllmb and the olimb at the forward speed for beat olimb. Only one type of descent is ueually evaluated. That is the autorotatiosal or power-off descent.

The apoed for beat rate of climb and mindmum rate of descent may be dotermined by the eawtooth climb procedures used for conventionsl aircraft. In making cilnt teste at the low rates of olimb and forward apeeds associated with hellcopters, speoial care mact be taken to obtain data during the best atmospheric conditions; that ig, negligible wind and turbulonce and no temporature invereione. Since velght ocrrections to olimio and descont data cannot be acourately determined by machematioal derivation, it is best to take the first eevtooth pointe at the degired veight and at the best ollmblng opeod from the manufacturer's data. Saw tooth olimb and descent data are reduced to standard oonditions by the procedures used for conventional airoraft and are presented as ahown in Figure 7.41.

Figane 7.41
Typical Savtooth Clinb and Doscont (Autorotation) Data

RATE OF CLDMB EVALUATION

For lielicoptars the war avallable in lovel flight ia conatart at a particular altitude. Foi inis reason it is not necessary to conduct sawtooth climbs. At the level flight opeed for minimm power required the marimum ex sese power for climb is available. This speed, corresponding to minimum c_{p} and $355 \sqrt{\sigma}\left(W_{g} / W_{t}\right) 3 / 2$ in Figures 7.32 and 7.34 reepectively, may be determined irom the level flight apeed -power performance for any values of C_{T}, (W / σ), $\nabla_{b} \cdot \sqrt{\sigma W_{t} / W_{g}}$, or $\left.\sqrt{\sigma W_{s} / W_{t}}\right)$ as shown in these figures.

To equation 7.301 may be added another variable, the vertical velocity (V_{v}). Using the new equation and dimensional analjeis, the fcitowing equations may be obtained:

The value of the forward-speed parameter for best rate of climb in both of these equations nay be determined by inspection of the level flight apeed-power data. If it is asoumed that, for a particular oet of conditions, the rate of climb variea nearly innearly oith the power available, then the above equation may be evaluated graphically for all climb conditions by uging the data from two check cilmbs at beat olimb epeed. Equation 7.402 is the esoier of the two to vork with in this respect and will bo used in this discuesion.

In a dimensional form for a particular airoraft the sped paramoter 1s:
$V_{t} \sqrt{\sigma \frac{W_{B}}{W_{t}}}=\nabla_{c} \sqrt{\frac{W_{A}}{W_{t}}}$

During a check climb to the ectual altitude the take-off value of W_{g} / W_{t} vill not ohange appreciably and the best ∇_{c} altitude schedule iram the speod-power data may be computed at a conetant W_{g} / W_{t}. Two check climbs at best forvard speed are now required. These climbe mas be accomplished at two power a日ttings for constant W_{p} / W_{t} or at two extreme values of W_{g} / W_{t} for a constant porer setting. Data from these check climbs are not reduced to standard conditions. Inotead the calibra-tion-corrected data are plotted as in Figure 7.42.

Figure 7.42
Method of Determining Two Climb and Pover Parameter Jalues for a Constant Effective Weight Ratio

This plot establishos two porer-parameter values and two rate of olimb parametex values for any value of the rotor rpm or effective wigint ratio parametera. This data are then croosplotted as in Figure 7.43 to show the variation of the cover and rate of climb parameters at constant rotor ry or effective welght ratio parameters. Fran this plot the rato of climb can bo determined for any weight, altitude, or power conditions.

The vertical climb case is identical to that described for the climb at host epesd. Here the forward speed is zero, but the teohnique of dotermining rate of climb for all conditions is accomplished as described above. In vertical olimbs the primary source of error is in dotermining and maintaining zero velocity rolutive to the air mass. This problom is partially solved by the use of a long weighted cord having ohort ribbong attached to it. Koeping the cord atreight and the ribbons hangir . down aseists in approximating zero forward speed.

Figure 7.43
Method of Plotting Rate of Climb Data for All Values of Power, Altitude, and Weigint at Best Climb Speed

AUTOROTATIONAL DESCENT EVALILATION
Rotor operetion without engine fower is reforred to 5 s autorotation. Under cortain conditions the helicopter nay descend and land safoly without engine pover. Since, during autorotation, the alr ilow through the rotor is opposite to the flow during level flight power-on conditions, there is some instability and loge of altitude during the trangition to autorotation and a minfrum rate of deacent. The helicopter performance investigation sbould determine altitudes and speeds at vhich autcrotation can be aenumed to result in a sefe landing. The forvard epeed for minimum rate of descent and the effecte of weight and altitude an artorotation should aleo be determined.

Equation 7.402 applies to the avicorotative descent. In thig case the power paramoter ie zero and the valum of V_{V} is negative. The dimenaional parametere are:

$$
\begin{equation*}
v_{v}\left(\sigma \frac{W_{g}}{W_{t}}\right)^{\frac{1}{2}}=\rho\left[v_{t}\left(\sigma \frac{W_{g}}{W_{t}}\right)^{\frac{1}{2}}, \quad v_{b}\left(\sigma \frac{W_{g}}{W_{t}}\right)^{\frac{1}{2}}\right] \tag{7.403}
\end{equation*}
$$

The maximum rotor efficiency in level flight is represented by the minimum value of C_{p} or $\operatorname{BHP} \sqrt{\sigma}\left(W_{s} / W_{t}\right) 3 / 2$ for level flight. This condition repreaenta the least power required relative to weicht, forward velocity, puselage drag, and rotor blade drag. In autorotation the total power absorbed by the helicopter 1e:

```
\(P_{\text {abeorbed }}=-\nabla_{\nabla} \mathrm{W}\)
        \(W V_{v}=P_{\text {induced }}+P_{\text {rotor drag }}+P_{\text {fuse lage drag }}\)
\(P_{\text {abourbod }}=\) mintmun at \(-v_{v}=\) minimum
```

In autorotation the blade pitch angle is amall and the angle of attack is large relative to level ilight oonditiong. It may be assumed from drag and lift coefficient ve anele of attack data that $P_{i}, P_{r d}$, and $P_{f d}$ are noarly proportional to level ilight values at the sars forward speeds, rotor speess, and weight. Thus the forward speed for least power required in level filght is the speed for least power absorbed and minimum rate of descont in autorotation. In fact by using the standard rate of climb equation and assuming the same rotor eificiency:

$$
\begin{align*}
W V_{v} & =P_{a v a i l}-P_{\text {req level flight }} \\
\text { if } P_{\text {avail }} & =0 \\
-v_{v} \mathrm{ft} / \mathrm{min} & =\frac{550(60) \mathrm{BHP}_{\text {level flight }}}{W} \tag{7.404}
\end{align*}
$$

Equation 7.404 will give a clowe approximation of autorotation rate of descent at any forvard speed.

An autorotative descent at best forward apeed determined from the lovel flight apeed pover periormance will establish the minimum rate of descent for all conditiong of weight, rotior speod, and aititude. Slince the velgit during descent does not change, the best descent apeed will be at a nearly constant ∇_{c} for an initial welcht, and will increase slightiy if the descent is started at the helicopter celling.

$$
\nabla_{t} \sqrt{\sigma} \sqrt{\frac{W_{B}}{W_{t}}}=V_{0} \sqrt{\frac{W_{B}}{W_{t}}}
$$

A desoent vhould be oonduoted at a $\nabla_{\text {higher and }}$ lower than the asaumed best V_{0} to eotablish the magnitude of variation of rate of dencont with emall variation of ∇_{C}. Figure 7.44 showe a typical plot of data for equation 7.403.

POWER-OFF LANDITIGS

With power on, a safe landing may uevally be exeouted verticalily. In autorotation a minimum rate of descent is in the middie apeed rance of the airoraft and the safeat landinga involve sone ground rall if the terrain is auitable. The power-off descent 1s made at minimum blade pitoh to provide minimum blade drag and maximum rotor spoed. Within a rotor diamotor of the ground this pitch angle may be rapidiy inoreased and the rate of deadent lovered oonmiderably for a short interval. This reduoes the forward apeed comeldorabls and upon torohdown a minimum ground roll will regult.

ROTOR SPEED PARAMETER, $\nabla_{b} \sqrt{\sigma \frac{W_{S}}{W_{t}}}$
Figure 7.44
Mothod of Plotting Autorotation Descent Data
A safe altitude for ontering into autorotation may be definod as tho height above the ground at whioh ontry into autorotation will result in a minimpm rate of deacent at a height of one rotor diameter above the ground. inip safo altitude may be plotted as a function of the forward speed at which ontry inte autorotation 18 etarted as in Figure 7.45. Data should be obtaingd as near the ground as poseible without aotually making a landing; a 2000 it altitude will give desirable results if contimoue ongine operation is assured.

Autorotative landinge over a aimulated 50 ft . obstacie ghould be conducted at the apeed for minimum rato of descent. This data vill establish the approximate air distance and ground diatance required for safe power-off landinge. These landing data are plotted as in Figure 7.46. Since the technique of making this type of landing is not alvays consigtont and the distances are so ehort, it is not feasible to apply any atandardization corrections.

Pigure 7.45
Mothod of Shoring Salo Beight for Batry into Autorotation

Fuel Consurption, Endurance and Range

Fuel consumption, range, and endurance data for helicopters powered by reoiprocating engines are handled in about the same manner as for conventionai aircraft. Ore exception to the theory and technique of Chapter Four is the inclusion of the rotor tip spesd parameter in the endurance and range equations. These equations are derived fram oquation 7.301, substituting opecific ondurance, SE, for BEP, in one case and specteic range, SRE, for BFP, in the other case. The two dimonaional equarions that result are:

$$
\begin{equation*}
\operatorname{se} \sqrt{\sigma}\left(\frac{W_{t}}{W_{s}}\right)^{3 / 2}=\frac{(\sigma)^{1 / 2}}{W_{1}}\left(\frac{W_{t}}{W_{8}}\right)^{3 / 2}=e\left[V_{t}\left(\sigma \frac{W_{B}}{W_{t}}\right)^{\frac{1}{2}}, \quad V_{b}\left(\sigma \frac{W_{B}}{W_{t}}\right)^{\frac{1}{2}}\right] \tag{7.501}
\end{equation*}
$$

$\operatorname{SRB}\left(\frac{W_{L}}{W_{g}}\right)=\frac{V_{t}}{W_{f}} \quad \frac{W_{t}}{W_{B}}=1 \quad\left[V_{t}\left(\sigma W_{B}\right)^{\frac{1}{2}}, \quad \nabla_{b}\left(\sigma \frac{W_{B}}{W_{t}}\right)^{\frac{t}{2}}\right]$
where:

$$
\begin{aligned}
& \left.W_{p}=\text { fuel flow (lbs } / \mathrm{hr}\right) \\
& V_{t} \sqrt{\sigma}=V_{c}
\end{aligned}
$$

For each mpeed-power calibration a plot ohould be made of fuel flow vereus brake horsepower. This plot is valid for both teot and atandard conditiong at the approxinate density altitude of the illght. Somo altitude effecta are uavaly noticeable as sham in Figure 7.51. It is oasential to dotormine fuel consumption, range and endurance data at typical lilght eltitudes, aince the oxast effeots of altitude an these variables cannot be determined by extragolation except in a narror range near the altitude ilow.

ENTDIRAKCE

The formand apeed for maximum ondurance is found from the apeod-pover calibrations at the point where C_{p} or BFP $\sqrt{\sigma}\left(W_{g} / W_{t}\right)^{3 / 2}$ is a minimum. This apeed corresponde to minimw power required for the rotor paramoter conditione exiating. The effects of weight, altitude, rotor epeed, and ongine speed on SE may be evaluated at th, best forvard epeed as illustrated in Figure 7.52. At 9 middle altitude the opecifio endurance parametor is determined at about four values of the rotor apeod parameter at two engine rpm's (if reduoed rotor rpm indicatea reduced power required on opeed porer plots). At a high and a low altitude the epeoific endwance parameter is found for only two extreme values of the rotor speod pacameter and a curve is faired betwoen them corroeponding to that found for the oomplete survey at the middle altitude.

Figuro 7.51
Typionl pral Fior-Poner Prementation

Although endurance data, as such, is not ugunily presented in the airoraft gerformanoe report, the requirement may arise for preaentation of endurance at all forvard opeeds as well as at the speed for maximum enduranoe. This may be accomplished by showing the endurance parameters at three typical altitudes for high and Iow values of the rotor speed parameters as in Figure 7.53. Enduranoe during the hovering condition ohould be separately evaluated if exch date is required.

Figure 7.53
Typical Indurance Parametor Data for all Forvard Speode

RADCE

The maximm range for helicopters is found at relatively high forward epeede for the C_{T} or rotor epeed parametor involved. In most cases some altitude effects are apparent in the fuel flow ve BBP plot and equation 7.502 does not otrictly apply. If the fuel 110 w -EPP plots are identical at all altitudes, equation 7.502 may be piotted an indioated in Pigure 7.54. One of the rotor apeod parameters ohould be flown at a reduced ongine rpm to eetablish any relative improvemont in apecifio range for this oondition. In genoral, for a given groes weight, a reduced ongine opeed reaulting in a reduced power and lorvard speod does not result in any appreciable increase in range.

Altitude is umaliy an important factor in the opeoiflo rango equations. Dita should be obtained at about three representative altitudes and plotted for congtant rotor ryn es in Figure 7.55.

FLaure 7.54
TJpioal Ranee Paranetor Date for 112 Tormard speode (Puel Fow - MiPP Plot, Identical at All Altitudea)

Tro ponalble extrome of the rotor upeote parametor are obtained at each of the altitudes to pernit extrapolation for this condition. If dealrod a rane oce pariuce for reduced enging upoed my be adled to Figure 7.55 at wis dome in Figave.7.5t. When a ocuplete range evaluntion in pramoter foim io not compldored neooscarry, date may be oimply presented as mpeoific range va troe opeed en ohorn in Fiqure 7.56. Date for this plot, al for other tjpen of range plote, shoald be obtained at varioue flight altituden.

Pigure 7.55
Typical Range Parameter data for all Forward Spoeds

Figure 7.56
Typical Speciric Range-True Speed Plot, One Al.titude, Weight, and Rotor Rpm

Air Spoed, Altimotor, and Tomperature

Syatem Calibrationa

Soparate air-apeod indicator and altimeter calibrations should be made with helloopters, because of possible orrors in the total prosaure at the aireapeod probe. No convereion of $d V$ to dH ehould be atternptod at large forward epeods. At iow epeeds the total effecte of air-gpeed error ($d \nabla_{c}= \pm 15$ knote) if converted to altimeter error would be negligible. A pacer airoreft maj be used to determino altimeter and air-spoed position orrors at high speeds. At low epeeds a take off time and distance recording camera can be used. These oalibration tests should alwajs be flow out of ground effect. Data are reduced as described in Chapter One. The method of plotting the air-apeed position error is iliustrated in Figure 7.61. Altimeter position error is plottod in the customary mannor, and data are usually obtained out of ground effeot.

Figure 7.61
Typical Helloopter Air -opeod Position Correotion Plot
Becauge of the low true apeode of belioupters, adiabatid temperature rise 1s negligible. The temperature probe should be carefully ohielded fram engine exhaut hoat and eolar radiation.

REFERENCES

GENERAL

1. Anonymous, "Ground School Notes - Book B - Performance", The Empire Test Pilots' School, Furntorough, Ministry of Aviation, United Kingdon.
2. King, J. J. et al, "Aerodynamics Handbook for Performance Flight Testing - Volume I', USAF Experimental Flight Test Pilot School, AFFTC-TN-60-28, July 1960
3. Perkins, C. D. and Dommasch, D. O., eds. 'Flight Yest Manual - Volume I - Performance', Advisory Group for Aeronautical Research and Development, 1959.
4. Polve, J. ki. "Performance Flight Testing", USAF Experimental Flight Test Pilot School FTC-TR-53-5, August 1953
5. Spillers, L. H. et al, "Pilots Handbook for Performance Flight Testing", USAF Experimental Flight Test Pilot School, FTC-TN-59-46, September 1960

STANDARD ATMOSPHERE

6. Anonymous, "Standard Atmosphere - Tables and Data for Altitudes to 65,800 Feet", International Civil Aviation Organization and Langley Aeronautical Laboratory NACA Report 1235. 1955
7. Minzner, R. A. et al, "U.S. Extension to the ICAO.Stendard Atmosphere - Tables and Data to 300 Standard Geopotential Kilometers'", United Siates Committee on Extension to the Standard Atmosphere, U.S. Government Printing Office, 1958
8. Minzner, R. A. et al, "The ARDC Model Atmosphere 1959", Air Force Cambridge Research Center TR-59-267, ASTIA Document 229482, August 1959

RECIPROCATING ENGINE AIRCRAFT PERFORMANCE

9. Bikle, P. F.. "A Simplified Manifold Pressure Correction", Army Air Forces, Hq. Air Technical Services Command, Wright Field, Dayton, Ohio, Flight Section Memorandum Report Serial No. TSCEP5E-1919, 29 June 1945
10. Bikle, P. F., "Performance Flight Testing Methods in Use by the Flight Section", USAF Air Materiel Command, WrightPatterson AFB, Ohio, Army Air Forces Technical Report No. 5069, 15 January 1944

TURBOJET ENGINE AIRCRAFT PERFORMANCE

11. Shoernacher, P. E. and Schonewald, R. L., "Reduction and Presentation of Flight Test Data for the F-86 Airplane having Automatic Engine Control and a Continuously Variable Jet Nozzle Area", AFFTC Technical Note R-8, July 1952
12. O'Neal, R. L., 'Performance Standardization for a Turbojet Engine Equipped with a Vartable Area Nozzle Controlled by Engine Specd', AFFTC Technical Memorandum 56-7, March 1956

POWER PLANTS

13. Chapel, C. E. et al, "Aircraft Power Plants", Northrup Aeronautical Institute Series of Aviation Texts, McGrawHill, New York, 1955
14. Anonymous, "The Aircraft Engine and Its Operation", Pratt and Whitney Aircraft Operating Instruction 100, February 1955
15. Gagg, R. F. and Farrar, E. V., "Altitude Performance of Aircraft Engines Equipped with Gear-Driven Superchargers"', S. A. E. Journal 34:217-225, June 1934
16. Pierce, E. F., "Altitude and the Aircraft Engine", SAE Journal 47:421-431, October 1940
17. Anonymous, "Performance Correction Procedures for Turbojet and Turbofan Cormmercial Engines", Pratt and Whitney Aircraft Operating Instruction 204, May 1961
18. Anonymous, "General Operating Instructions, Axial Compressor Nonaf́terburning Turbojet and Turbofan Engines", Pratt and Whitney Aircraft Operating Instruction 190, April 1963
19. Anonymous, "General Operating Instructions, Axial Compressor Afterburning Turbojet and Turbofan Enginea'. Pratt and Whitney Aircraft Operating Instruction 191, November 1963
20. Anonymous, "Aircraft Performance Engineer's Manual for B-36 Aircraft Engine Operation', Strategic Air Command Manual No. 50-35, 1952

LAG CORRECTION

21. Irwin, K. S., "Lag in Aircraft Altitude Measuring Systems", Air Force Flight Test Center FTC-TDR-63-26, 1963

CLIMB PERFORMANCE

22. Grosso, V. A., "Analytical Investigation of the Effects of Vertical Wind Gradients on High Performance Aircraft': AFFTC Technical Report 61-11, March i901
23. Shoemacher, P. E., "Use of Corrected Non-Dimensional Parameters for Standardizing Jet Aircraft Rate-of-Climb Data', AFFTC Technical Report 52-13, May 1953
24. Grosso, V. A., "Investigation to Determine Effects of Several Parameters on Optimum Zoom Climb Performance', AFFTC Technical Note 59-32, October 1959
25. Grosso. V. A., "F-106A Zoom Climb Study', AFFTC Technical Information Memorandum 58-1047, October 1958

TAKE-OFF PERFORMANCE

26. Lush, K. J., ''Standardization of Take-Off Performance Measurements for Airplanes', AFFTC FTC-TN-R12
27. Dunlap, E. W., "Corrections to Take-Off Data", AFFTC Technical Information Memorandum 59-1078. February 1959

HELICOPTER PERFORMANCE

28. Anonymous, "A Review of Current Helicopter Technology", Vertol Division of Boeing Co., Morton. Penna., Zectures to Graduating Class of Naval Test Pilot School, Patuxent Naval Air Station, rebruary 1963
29. Swope, W. A., "Lectures on Rotary Wing Performance", U. S. Army Transportatior. Materiel Command, Aviation Test Office, Edwards AF Base, California, Lectures to USAF Experimertal Test Pilot School, Spring 1960.
30. Wheelock, R. H., "An Introduction to the Heli..-pter", Bell Helicopter Cu., Fost Worth, Texas, 1962

CHET I -1

Preceding page blark

CHART I -

CHART I - 1

8-12

8-13
chu゙is I - 1

$8-15$

Cinat I - 1

2.4
(1)
2.0

$a^{0} R^{2}$
1.8
 Z

ゆ
2.6
1.4
\$. 2
1.0

O

(10.e.tic

.

\therefore
青
$E(1$
$\square+1$
+1
+1
+1

cant I - 3
Arin 6273
8-18

Aver 673
Cury I-3

8-19

CHART I - 4
AP1R 6273

grart I-4
TOSAL - 8Tatic mesiti natio, P_{t} / P_{s}

4

 " (\%)
 15 , , ,
 CH

10

 5 ${ }^{5}{ }^{2}$

6
8
18
20
16

\qquad

(1)

1) - Comastelocs Donmetrian of tho 02me年

12
 507:
淂

10

0
8
8
6
8
4
8
8
CRART I - 5
园
 －
SNIT Fin：3sin BITO，P_{t} / P_{t}
（1）－Coudttione Downatrean of the sbock

H \rightarrow
.7
Y
M M

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \ldots |

耕－
㡿

$$
\frac{10}{24}
$$

4.5

$$
\bullet 2
$$

. 2

T

 (3)

GARRT I - 5
(

CHART I - 5

char I -5

D	Aerodymanc Drac	20e
dH_{p}	Altimeter Position Irroc, $\mathrm{E}_{10}-\mathrm{H}_{0}$	ft
d $\mathrm{Pb}_{\mathrm{pc}}$	Altimeter Position Error Correction, $\mathrm{H}_{\mathrm{c}}-\mathrm{H}_{10}$	It
dM_{ρ}	Mach Meter Position Error, Mic - M	
$\mathrm{dMpc}^{\text {P }}$	Mach Mater Position Error Correotion, M - Mic	
$d P_{p}$	Static Pressure Position Errar, $\mathbf{P}_{s}-\mathbf{P}_{\mathbf{a}}$	${ }^{1} \mathrm{~B}_{8}$
$d P_{p o}$	Static Pressure Position Correction, $P_{\text {a }}-P_{s}$	${ }^{1} \mathrm{H}_{8}$
$d \nabla_{p}$	Air-Epeed Moter Position Error, $\nabla_{1 c}-\nabla_{c}$	brote
$\Delta \nabla_{p o}$	Air-apeed Meter Poaition Error Correction, $\nabla_{c}-\nabla_{i c}$	lnots
dH	Pressure Altitude Increment	It
dh	Tapeline Altitude Increment	ft
$\left(d H_{0} / \Delta t\right)$	Rate of Climb (Altineter)	$\mathrm{ft} / \mathrm{min}$
(dy/dv)	Altimeter-Air-apeed Pobition Frror Correction Ratio	It/imot
(dM/dH)	Mach Number-Altimeter Poaition Frror Correotion Ratio	1/5t
($1 M / \Delta V$)	Mach Number-A1r-apeed Position Hrror Correction Ratio	1/knot
(dv/dh)	Vertical Wind Gradiont	lontel/1000 it
$\left(\mathrm{dV} \mathrm{c}_{0} / \mathrm{dH}_{0}\right.$)	Ais-speed-hltitule Change fatio During Climb	fnots/1000 ft
(dn/dt)	Fate of Climb (tapolins)	ft/min
$(\Delta h / d t)_{a}$	Pate of Climb (Tapeline, Acceleratiag C11mb Speed)	ft/min
$\left(d q_{c} / d \nabla_{0}\right)$	Ingect Preasure-Calibrated Apeed Cbange Ratio	Tra/knot
τ	Total Eneres	foot-2bs
E88P	Ehauat Beok Proseure	${ }^{\circ} \mathrm{H} 8$
FHP_{1}	Echaust Back Preasure (Indicated)	${ }^{1} \mathrm{~B}_{6}$

188.	Fhauct Back Proubur (Etandard)	${ }^{188}$
$\pm \mathrm{FP}_{t}$	Elomugt Brak Preagure (teot)	${ }^{1} 8$
-	Partial Preasure of Water Vepror	${ }^{4} \mathrm{HE}$
-	Airplan Efficiency Factor, $\frac{C_{L}^{2}}{C_{D_{1}} \pi R^{2}}$	
F	Foroe or thruot	2ba
- ${ }^{2}$	Degreen Famrenboit	
F_{0}	Entrance Momentmi per Soocod	1ba
Foff	Trupot (Effootivo)	16m
Feffo	Thrugt (Blfootivo standard)	16
Fefft	Thruat (Effeotive Iost)	1bs
F_{8}	Theratt (Crose)	100
I_{n}	Pixuct (liot)	2b0
Fn	- Pruat (Eot Aresiable)	2bd
Fob	thruet (Sot Reoses)	289
$\boldsymbol{T}_{\text {m }}$	Thruet (Vet Required)	2bs
F_{p}	Trruat (Preasura)	1 la
I_{7}	2mugt (Vol001ts)	105
8	Aooolaration of Cravity	32.174 It/e00 ${ }^{2}$
\mathbf{H}_{0}		ft
H	R-oumrre iltitude (Indioated)	ft
E_{10}	Prosulue Altitude (Indionted Instrwiont Correoted), $H_{1}+\Delta H_{10}$	It
ΔH_{10}	Altimstor Instruent Correotion for H_{1}	It
$\Delta \mathrm{E}_{2}$	Ing correction to Altimeter	It
	.	
Arta		CHABT II-2

Cunex II-1	NOMGNCLATURE	
$\Delta \mathrm{H}^{0}$	Ponition Irror Correotion to Altinitar	It
${ }^{3} \mathrm{~B}_{2} \mathrm{O}$	Inobes of Weter	
"H8	Inches of Moroury	
h	Tapeilide Altitude	ft
Ins	Indicatee AIr Epeod	bnote or me
in	Inohee	
K	Totel Tomperature Peoovery Paotor	
${ }^{\bullet} \mathbf{I}$	Degrees Kolvin	
K_{8}	Jot Nozzie Gae Mow Callbration Faotor $K_{B}=\frac{W_{g} \text { agtual }}{W_{g} \text { theor. }}$	
2min	Ellonetere per hove	
r_{t}	Jot Foasle Grome threat Gallbration Yootore $\Psi_{t}=\frac{Y_{6} \text { actnal }}{Y_{B} \text { theor. }}$	
k	Any Conatent	
2	Lift Hoseo	180
1	Iength	It
18	Pound	
\boldsymbol{M}	Nach Mrember (Froe Streme), V/a	
$\boldsymbol{\mu}$	Meter	
x_{12}	Moh mimber at Altitude for Bawo $\boldsymbol{T}_{\mathrm{g}}$, Belati Mach nuber at ene Lovol for gean ∇_{0}	
x_{1}	Malh Mrubor (Indicated)	
H_{1}	Noh Tomber (Inlicated Inetrument Correoted or Mah Inmar Conduted fras ∇_{10} and E_{10})	
csuxt 피-1	8-38	Nre 6073

88	Atnorphorio 2reumue (Ean Iovel 8tandard)	29.9212 HE
P_{t}	Total FIon Preombe	T8
P_{t}^{\prime}	Total IIO ETOEme	"H8
$P_{t 2}$	Totel Flow Proanure (Jet Figing Capreasar Inlet)	${ }^{1} \mathrm{H}_{8}$
$p_{\$ 1}$	Total Fiow Preasme (Indioated)	${ }^{\circ} \mathrm{H}$
$P_{t j}$ cres $P_{t 8}$	Total Fion Proumme (Jot ross2e)	${ }^{8} 8$
P	P_{0} / P_{81}	
$\left(p_{2} / p_{2}\right)_{0}$	Curburetcr Deok-Amient Freeoure Eintio	
$\left(P_{2} / P_{1}\right)_{2}$	Manifold Proenure-Carburetor Dock Froamere Ratio (For Fiol-Alx Mature)	
put	Founde per Equare Foot	
pet	Pornis per Equere Inoh	
2III	$\operatorname{zip} \sqrt{\sigma} /\left(n_{t} \mu_{0}\right)^{3 / 2}$	It-2bu/time
8	Dronado Ireacue, $Q=\frac{2 T^{2}}{2}=\cdot 7 P_{0} K^{2}$	$18 / 8 t^{2}$
a	Irpoot or mifforential Promare, $P_{t}-P_{\text {a }}$	"18
${ }_{8}^{\prime}$	mifterential Prowerre	08
cic		${ }^{0} \mathrm{BR}$
8	Can Copetant	96.0 It/ay $53.355 \mathrm{ft} /{ }^{\circ} \mathrm{R}$
8	Vi0000 Drping, 32 m Ifota	Ibarme/tts
-2	Degreee Enoldoe	
D	Lemer	rantion alr mioo cr utatute atr illee
8	Eegrolde nemers, Vity	
3/6	Hate of OLint (standaring apood, Tout Powr and 	st/rata

$\begin{aligned} & (R / C)_{t} \\ & (R / C)_{t} \end{aligned}$	$\begin{aligned} & \text { Rate of Climb (Standard), } R / C+\Delta R / C_{2}+\Delta R / L_{3}+ \\ & \Delta R / C I \\ & \text { Rate of Climb (Toot), (} \left.d Z_{0} / d t\right)\left(T_{a t} / T_{a n}\right) \end{aligned}$	Pl／atu It／ana
（R／D）	Reste of Desoent	P6ical．
8	Wling Area	$s t^{シ}$
8	Trm－012 Gromed Roll Deatance	ft
\mathbf{g}^{\prime}	Tale－off Air Datanoe to 50＇Obatacle	ft
82	Ianding Ground Roll Distanco	Pt
E_{2}	Inoding 417 Diatance From 50＇Obstacle	ft
8／a	Inding Cround Roll Dictance（Standard，Zoro Wind）	$1 t$
$8_{l 8}^{\prime}$	Ianding Air Dietance from 50° Obstaclo（Standaid， Zero Hind）	It
$8_{\ell t}$	Landing Ground Roll Datanoe（Tost，Zoro Wind）	ft
8^{\prime} ¢t	Ianding Air Motance from 50° Obstacle（Tent， Zoro Mind）	ft
$8^{4 t y}$	Ianding Cround Boll Dietanoe（Toet，with Mind Comporent）	$f t$
8^{\prime} ¢x	Landing dir matance from 50° Obstacle（Teat， with Wind Component）	$f t$
8	Take off Cround Roll Distance（Standard，Zoro Wind）	ft
8	Tareotif Air Distanoe to 50＇Obstacie（Standard， Zoro Hind）	ft
8	Tameofl Gromd Roil Distance（Toat，Zoro vind）	ft
$8{ }_{t}^{\prime}$	Inke－off Ale Matance to 50° Obsteole（Tect， Zero Wind）	5
$8_{6 *}$	Thice off Cround Roll Dlotanoe（Teat，with Uind Camponent）	$f t$
$日_{t}^{\prime}$	Tabe－off Als Dietanoe to 50＇Obstecle（Teat，vith Uind Component）	5
8	Epeoiflo moduranoe	bre／1b

CHART II-1	NOMETCLATURE	
Soo	Seconde	
Sp 8	Specific Gravity	
SR_{8}	Specific Range	nautical air miles/lb or statute air miles/lb
T	Temperature $\quad \bullet \mathrm{K}$ or $\bullet^{\text {R }}$	
Ta	Atmospheric Temperature $\quad \bullet \mathrm{K}$ or $\bullet^{\bullet} \mathrm{R}$	
T_{88}	Atmospheric Temperature (Standard) - $\mathrm{K}^{\text {or }} \cdot \mathrm{R}$	
Tat	Atmospheric Temperature (Test) - \mathcal{S} or $\bullet^{\text {R }}$	
$\mathrm{T}_{\mathrm{c} \text { c }}$	Chart Carburetor Alr Temperature for Pressure -K or •R Altitude	
$\mathrm{T}_{\mathbf{c s}}$	Standard Day Carburetor Alr Tomperature, $\quad{ }^{\prime} \mathrm{K}$ or ${ }^{\bullet}$ R $T_{a s}-T_{a t}+T_{a t}$	
$\mathrm{T}_{\text {ct }}$	Test Das Carburetor Alr Temperature - $\mathrm{I}_{\text {or }}{ }^{\circ} \mathrm{R}$	
T_{1}		
T_{10}		
T_{19} or T_{18}	Temperature (Indicated Jet Hozzle) \quad I or \bullet R	
Ts		
Ts		
$\mathrm{T}_{\mathbf{S L}}$	$\begin{array}{lr}\text { Terrperature (Standard Soa Level) } \\ & 15^{\circ} \mathrm{C} \\ 288{ }^{\circ} \mathrm{C} \\ \\ 590 \mathrm{~F}\end{array}$	
T_{t}		
Tt2		
$\mathrm{T}_{\text {t }}$	Tomperature (Total Brhaust Gee Tomporature it or or $\bullet^{\boldsymbol{R}}$ Turbipe Oatlet)	
Te	$T_{a} / T_{S L}$	
tas	True sir speod brote ar meg	
CBART II-1		A518-68.73
	8-42	

$\Delta^{\boldsymbol{T}} \mathbf{p c}$	Alr-speod Position Error Correotion	luote or mph
$\nabla_{\text {td }}$	Landing Volooity	motes 0 ereph
$\nabla_{\text {SL }}$	Soa Lovol Standard ∇_{t} for Some ∇_{0}	bnote or mph
∇_{t}	Als Speed (true)	brote or mph
∇_{t}^{\prime}	Flow true Speod Following Rormal shook Wave	bnote or mph
$\nabla_{\text {to }}$	Take -off Velocity	brote or mph
$\nabla_{\text {too }}$	Take -off Velooity (Standard)	luots or mph
$v_{\text {tot }}$	Take -off Velooity (Tent)	mote or mph
$\nabla_{\text {te }}$	True Speed (Standard)	mote or mph
$\nabla_{t t}$	True Speod (Toent)	roote or mph
$\nabla_{\mathbf{w}}$	Wind Componont Along Rumvay, Headvind (t), Tallwind $(-)$	lnote or mph
VIW	Sped Paramotor, $\nabla \sqrt{\sigma} /\left(u_{t} / W_{0}\right)^{\frac{1}{2}}$	luots or mph
W	Crose Weight	1bs
ΔW	Helght Inoremont, $\mathbf{W}_{\mathbf{B}}-\mathbf{W}_{\mathbf{t}}$	2bs
$W_{\text {a }}$	Air Flow	1bs/000
W_{f}	Puel Plow	lbs/me
W_{B}	Cas FIO	1be/800
W8L	Specific Weight of Alx (Soa Level Standard)	$0.0765 \mathrm{lbs} / \mathrm{ft}^{3}$
W_{0}	Croes Melght (Standard)	1bs
W_{t}	Groes Weight (Teet)	18.
I	$\left[\left(\frac{P_{t}}{P_{a}}\right)^{.2481}-1\right]$	
τ	Ratio of Specifio Hoat ($\gamma=1.4$ for Air)	
δ^{\prime}	$\mathrm{Pa}_{\mathrm{a}} / \mathrm{P}_{\mathrm{gI}}$	
δ_{2}	$\mathrm{P}_{\mathrm{t} 2} / \mathrm{P}_{\mathrm{BL}}$	

MOSLHTLLATURE

THP	Thrugt Horsepower, BiP x ' ${ }^{\text {P }}$
(TEP) ${ }_{8}$	Thrust Hosopower (Standard)
$(T H P)_{t}$	Thrust Eorsepower (Test)
$(\mathrm{THP})_{\text {as }}$	Thruat Horseporer (Available Standard)
$(T H P)_{\text {at }}$	Thrust Horsepower (Available Test)
t	Tim
t	Tomperature
t_{a}	Atmospheric Temperature
$t_{8 g}$	Atmospheric Temperature (Standard)
$t_{\text {at }}$	Atmospheric Temperature (Tost)
t_{0}	Time Elapeed
t_{1}	Temperature (Indicated)
t_{10}	Tomperature (Indicated Instrument Corrected)
Δt_{10}	Tomperature (Instrument Correotion)
Δt	Compreseion Temperature Rise
t_{6}	Tomperature (Static)
t_{8}	THm of Start
t_{t}	Tomperature (Total Flov)

V
∇_{0}
∇_{0}
∇_{1}
∇_{10}
$\Delta \nabla_{10}$
$\Delta V_{i c \ell}$
AFIR-6273

CEART II-1
550 ft-1be/sec
550 ft-1bs/e0c
550 Pt -1bs/seo
550 ft -1bs/vec
550 ft -lbs/sec
${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{C}$ or ${ }^{\bullet} \mathrm{F}$
${ }^{\circ} \mathrm{C}$ or ${ }^{-} \mathrm{F}$
${ }^{\circ} \mathrm{Cor}{ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{C}$ or ${ }^{\bullet} \mathrm{F}$
${ }^{-1} \mathrm{Cor}{ }^{\bullet} \mathrm{F}$
${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{C}$ or ${ }^{-} \mathbf{F}$
${ }^{\circ} \mathrm{C}$ or ${ }^{\bullet} \mathrm{F}$
${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
usually ft/8eo
lonote or mph
brote or aph
bote or mph
bnots or aph
bote or mph
hoots or mph
CHART II-1

$\boldsymbol{T}_{\text {R }}$	Ram Efflcionoy	
$\eta_{\text {RT }}$	Dact Ram Effiolonoy (Total, Through Mormal Shook Wave and Duot)	
η_{p}	Propeller gericiency	
θ	Alrcraft Climb Angle	
$\theta_{\text {a }}$	$\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\text {gL }}$	
λ	Lag Constant	000
λ_{h}	Lag Conotant (Altimetor)	80 c
$\lambda_{\text {bSL }}$	Iag Constant (Altimoter, Soa Lovel)	80 c
λ_{t}	Lag Constant (Total Pressuro)	80 c
$\lambda_{\text {LSL }}$	Lag Congtant (Total Pressure, Sea Levol)	000
μ	Coofficioney of V180001ty	1b-j00/ft ${ }^{2}$
$\mu_{0} \operatorname{cr}^{\mu} \mu_{s i}$	Cooffioiont of Vigoonity (Standard soa Iovel)	$\begin{aligned} & 3.725 \geq 10^{-7} \\ & 10-700 / \mathrm{st}^{2} \end{aligned}$
2	Tinmatio Visooolty, μ / ρ	$\mathrm{st}{ }^{2} / \mathrm{seo}$
$\gamma_{0} 0 r^{\prime}$	Kinematio Visooulty (Soa Level Brandard)	$\begin{aligned} & 1.5665 \times 10^{-4} \\ & \text { ft } 2 / 000 \end{aligned}$
π	F1	3.1416
ρ	Aic Domity	-lugm/ft ${ }^{3}$
$\rho_{0}^{\text {cre }} \rho_{S L}$	Air Donality (bon Invel Btandard)	0.000378 luga/ ft^{3}
σ	Alc Dorgity Ratio, $\rho / \rho_{\text {cal }}$	
7no	Duct ram zeflcioncy	

STSTENS OF UNTTS

	ABSOLUTE UNITS		CRAVITATIONAL UNITS		
Name of Unit	Britigh EPS Syatom	Motrio COS Syatem	Britiah	Matric	Fhybicel MET System
Length	1 ft .	1 cm	1 ft .	1 M	L
Trime	1800	1 seo	1800	1800	T
Force	1 poundal	1 dyns	1 lb	1 K8	MLT ${ }^{-2}$
Area	$1 \mathrm{ft}^{2}$	$1 \mathrm{~cm}^{2}$	$1 \mathrm{ft}^{2}$	$1 \mathrm{M}^{2}$	L^{2}
Volume	$1 \mathrm{ft}^{3}$	$1 \mathrm{cmi}^{3}$	$1 \mathrm{ft}^{3}$	$1 \mathrm{~N}^{3}$	L^{3}
Velocity	$1 \mathrm{ft} / \mathrm{sec}$	$1 \mathrm{~cm} / \mathrm{sec}$	$1 \mathrm{ft} / \mathrm{sec}$	$1 \mathrm{M} / \mathrm{sec}$	LT ${ }^{-1}$
Acoeleration	$1 \mathrm{ft} / \mathrm{sec}{ }^{2}$	$1 \mathrm{~cm} / \mathrm{sec}^{2}$	$1 \mathrm{It} / \mathrm{sec}{ }^{2}$	$1 \mathrm{~m} / \mathrm{sec}{ }^{2}$	LT ${ }^{-2}$
Work or mergs	$1 \mathrm{ft-pd} 1$.	1 org	$1 \mathrm{ft}-16$	$\underline{123}$	$M L^{2} T^{-2}$
Prassure	$1 \mathrm{pdl} / \mathrm{st}{ }^{2}$	$1 \mathrm{dym} / 0 \mathrm{~m}^{2}$	$1 \mathrm{lb} / \mathrm{ft}{ }^{2}$	$1 \mathrm{Hg} / \mathrm{H}^{2}$	ML ${ }^{-1} \mathrm{~T}^{-2}$
Momentum	1 pal-800	1 dyme-8ec	1 lb -800	1 Kg -sec	MLT ${ }^{-1}$
Power	1 ft-pd per eac.	$1 \mathrm{erg} / \mathrm{sec}$	$\begin{aligned} & 1 \text { ft }-1 . \mathrm{b} \\ & \text { per goo } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{Kg}+\mathrm{M} \\ & \mathrm{por} \operatorname{sen} \mathrm{O} \end{aligned}$	$M L^{2} T^{-3}$
Mass	118	1 cm	1 slug	1 slug	M
Temperature	$1^{\circ} \mathrm{R}$	$1{ }^{\circ}$	$1{ }^{\circ} \mathrm{R}$	$1{ }^{\circ} \mathrm{K}$	$L^{2} T^{-2}$

Volume (L^{3}) and Mace (H) CRMRT II-3

									0	

i． 1										
s［7pisncia							呙号		$\left\|\begin{array}{cc} x_{1} & 0 \\ -1 & 0 \\ \cdots & 1 \end{array}\right\|$	－
spernoa								6 \sim \sim \sim \sim 0	\cdots	＋
640．8015							管	－-1	n N N	n $\stackrel{\circ}{0}$
seusd							\cdots	$\begin{array}{ll} 0 \\ 0 & 0 \\ 8 & 0 \\ -i & n \end{array}$		
aranbs xed bprmod				$\begin{aligned} & \text { + } \\ & \mathbf{8} \\ & 0 \\ & 0 \end{aligned}$		－				
n．ibnt；rad eprnod	0% 0 0 0 0 0 0 0	吉	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { 붑 } \\ & N \end{aligned}$	-1	㐒				
$\begin{array}{r} \text { JoSI } \\ \text { 7R dequM do opyoul } \end{array}$		$\begin{gathered} 5 \\ 5 \\ \hline 1 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { gN } \\ & \text { mi } \\ & \sim \\ & \sim H \end{aligned}$	\cdots	$\begin{aligned} & \mathrm{F} \\ & 5 \\ & 7 \\ & n \end{aligned}$	$\left[\left.\begin{array}{ll} n & \Omega_{1} \\ 8 & c \\ m & n \\ m \end{array} \right\rvert\,\right.$				
0.070 Sスmo．raw do 日orvuI			\cdots			0 0 0				
2.078 LanOLON よ0 0xazomizuej		\cdots	$\begin{aligned} & \text { N } \\ & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & \underset{n}{n} \\ & i \end{aligned}$	N	S 0 0				
8өxeqdeom2V	\cdots	8 8 7 88	$\begin{aligned} & g_{0} \\ & \text { n } \end{aligned}$			N N 0 0 \sim				
		$\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 4 & 0 \\ 1 & 0 \\ 4 & 0 \\ 0 & 0 \\ 8 & 0 \end{array}$	$\begin{aligned} & m \\ & 5 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 08 \\ & 80 \\ & 0 \\ & 5 \\ & 4 \\ & \hline 0 \end{aligned}$				\％	最	\％	m 0 0 8 0 0

＊Conversion factors between absolute and eravitational unite apply only under standard acceleration due to gravity conditiong：

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Linear Volooity（ \(\mathrm{LT}^{-1}\) ）} \& \multicolumn{3}{|r|}{CHART II－3} \\
\hline suot 200 exoquerty \& \[
\begin{aligned}
\& m \\
\& \underset{\sim}{2} \\
\& 0
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 18 \\
\& 1 \\
\& 1
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \mathrm{~N} \\
\& \text { OO } \\
\& \text { Hi }
\end{aligned}
\] \& \begin{tabular}{|c}
\(*\) \\
\multirow{2}{*}{} \\
0
\end{tabular} \& \& 2

\sim

¢ \& $$
i
$$ \& $\stackrel{\square}{\stackrel{\circ}{\circ}}$ \& \cdots

\hline pa0009 a0d maxertyon \& $$
\begin{gathered}
N_{n} \\
N_{n} \\
N_{n} \\
n_{n}
\end{gathered}
$$ \& ！ \& \[

$$
\begin{array}{r}
9 \\
8 \\
-2
\end{array}
$$
\] \& \& \& \& \& ： \& － \& 응

\hline $2^{\text {（eq0un）}}$ \& \& 罟
N
N \& ； \& i \& \& \＃
¢
－ \& ： \& － \& ： \& ：

\hline equax \& $$
\begin{aligned}
& \circ \\
& 8 \\
& 8 \\
& \text { ni }
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& \text { r} \\
& \dot{0} \\
& \underset{\sim}{\prime}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Mo } \\
& \text { añ } \\
&
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \tilde{n} \\
& \underset{\sim}{n} \\
& \underset{-1}{4}
\end{aligned}
$$
\] \& \& － \& ！ \& \cdots \& ¢

\hline \& \& $$
\begin{aligned}
& \text { F̈ } \\
& \underset{\sim}{*}
\end{aligned}
$$ \& \& ： \& ： \& \cdots \& i \& － \& ； \& －

\hline moq xed eettw \& \[
$$
\begin{gathered}
\hat{5} \\
8 \\
0 \\
\text { in }
\end{gathered}
$$

\] \& \& 8 \& | 5 |
| ---: |
| 8 |
| 0 |
| 0 | \& － \& i \& \＄ \& : \& d

d

＋ \& | \％ |
| :--- |
| 8 |
| |

\hline \& 8 \& $$
!
$$ \& \[

$$
\begin{aligned}
& \mathbf{O} \\
& \mathbb{R}
\end{aligned}
$$

\] \& － \& 8 \& \& \％ \& i \& \[

\underset{\sim}{8}
\] \& 沵

\hline －quaty \& \& \& \rightarrow \& \& \& ！ \& $$
\begin{aligned}
& 18_{n}^{n} \\
& 80 \\
& \alpha^{n}
\end{aligned}
$$ \& i \& \％ \& 9%

90
0
0

\hline $z^{(p 00004 ~ x e d ~ y o w i c) ~}$ \& ！ \& \cdots \& ！ \& ： \& ！ \& $$
\begin{aligned}
& 0 \\
& 8 \\
& 0 \\
& 0
\end{aligned}
$$ \& ： \& \％ \& ： \& ：

\hline pousem red read \& \cdots \& i \& 8 \& \& 8
8
8
0 \& \& \％ \& i \& \％ \& 8

\hline \& \& $$
(\text { set per soecsa })^{2}
$$ \& \& \& yalee per hour \& \& 名 \& \[

$$
\begin{aligned}
& N \\
& 8 \\
& 8 \\
& 8
\end{aligned}
$$
\] \& enatinctore per eso \&

\hline
\end{tabular}

CHART II-3 Lingar Acceleration (IT^{-2})

CAART II-3
Anguler Volooity (T^{-1}) and Angular Accoleration (T^{-2})

CBURT II-3

[^0]: *Use of the Newtonian in rse square law is based on the assumption that the earth is a nonrotating gphere composed of spherical shells of equal density. This assumption is very good at altitudes attained in routine flight test work ($\mathrm{H}<100,000$ geopoiential feet). For higher altitudes, a more sophisticated analysis may be necessary. A method which is good to several million feet is given in AFCRC TN-56-204, "The ARDC Model Atmosphere, 1956," by R. A. Minzner and iV. S. Ripley.

[^1]: *The altimeter setting is an adjustment that allows the scale to be moved so that the altimeter can be made to read field elevation when the aircraft touches the ground. In flight testing, the altimeter setting should be 29.92 in order that the altimeter reading will be pressure altitude.

[^2]:

